IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p494-d1022716.html
   My bibliography  Save this article

Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant

Author

Listed:
  • Varun Pratap Singh

    (Department of Mechanical Engineering, School of Engineering, University of Petroleum and Energy Studies, Energy Acres, Bidholi, Dehradun 248007, Uttarakhand, India)

  • Gaurav Dwivedi

    (Energy Centre, Maulana Azad National Institute of Technology, Bhopal 462003, Madhya Pradesh, India)

Abstract

This study investigates the possibility of applying a large-scale solar updraft tower power plant in India with local ground conditions as an environmentally friendly and economically viable energy source. A reference model Solar Updraft Tower Power Plant (SUTPP) is constructed to examine the influence of the most prominent plant dimensional parameters, including collector radius ( R Collector ), tower height ( H Tower ), and tower radius ( R Tower ) with dimensional limits and intervals on the power output of the SUTPP. Udat, Rajasthan, India, is used as a reference location for meteorological conditions to evaluate SUTPP power output equations for a ranging power output, with position coordinates of 27°35′ and 72°43′. Multiple simulations for the objective function are carried out, and the outcomes are compared to the optimized dimensions of each set of plants. The model examines the effect of variation in ambient, plant geometry, and material conditions on power output and analyzes efficiency and power output for optimizing configuration. There exists no definitive approach to determining the proper correlation between the geometrical parameters of a SUTPP with optimized power output. For a fixed power output, the tower radius ( R Tower ) serves as the most influencing dimensional parameter in SUTPP performance. A change in tower height ( H Tower ) has a detrimental impact on SUTPP output and performance. An initial increase in collector radius ( R Collector ) has a positive influence on SUTPP performance; however, this effect reduces as collector radius ( R Collector ) increases.

Suggested Citation

  • Varun Pratap Singh & Gaurav Dwivedi, 2023. "Technical Analysis of a Large-Scale Solar Updraft Tower Power Plant," Energies, MDPI, vol. 16(1), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:494-:d:1022716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    2. Chandan Swaroop Meena & Ashwani Kumar & Siddharth Jain & Ateeq Ur Rehman & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Muhammad Shafiq & Elsayed Tag Eldin, 2022. "Innovation in Green Building Sector for Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    3. Bhattacharya, S.C. & Jana, Chinmoy, 2009. "Renewable energy in India: Historical developments and prospects," Energy, Elsevier, vol. 34(8), pages 981-991.
    4. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Raffaello Cozzolino, 2022. "Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    5. David Cyranoski, 2018. "China tests giant air cleaner to combat smog," Nature, Nature, vol. 555(7695), pages 152-153, March.
    6. Bakshi, Rakesh, 1998. "India's emergence as a global leader in renewable energy technologies," Renewable Energy, Elsevier, vol. 15(1), pages 107-113.
    7. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    8. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    9. Rosaliya Kurian & Kishor Sitaram Kulkarni & Prasanna Venkatesan Ramani & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM," Energies, MDPI, vol. 14(14), pages 1-16, July.
    10. Jackson Lord & Ashley Thomas & Neil Treat & Matthew Forkin & Robert Bain & Pierre Dulac & Cyrus H. Behroozi & Tilek Mamutov & Jillia Fongheiser & Nicole Kobilansky & Shane Washburn & Claudia Truesdell, 2021. "Global potential for harvesting drinking water from air using solar energy," Nature, Nature, vol. 598(7882), pages 611-617, October.
    11. Choi, Young Jae & Kam, Dong Hoon & Park, Yoon Won & Jeong, Yong Hoon, 2016. "Development of analytical model for solar chimney power plant with and without water storage system," Energy, Elsevier, vol. 112(C), pages 200-207.
    12. Muhammed, Hardi A. & Atrooshi, Soorkeu A., 2019. "Modeling solar chimney for geometry optimization," Renewable Energy, Elsevier, vol. 138(C), pages 212-223.
    13. Bakshi, Padmashree Rakesh, 1997. "An overview of renewable energy commercialization in India," Renewable Energy, Elsevier, vol. 10(2), pages 347-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).
    2. Singh, Ajeet Pratap & Kumar, Amit & Akshayveer, & Singh, O.P., 2021. "A novel concept of integrating bell-mouth inlet in converging-diverging solar chimney power plant," Renewable Energy, Elsevier, vol. 169(C), pages 318-334.
    3. Byeong-Hwa An & Kwang-Hwan Choi & Hwi-Ung Choi, 2023. "Heat Transfer Augmentation and Friction Factor Due to the Arrangement of Rectangular Turbulators in a Finned Air Channel of a Solar Air Heater," Energies, MDPI, vol. 16(19), pages 1-18, September.
    4. Praveen, Vivek & Das, Pritam & Chandramohan, V.P., 2021. "A novel concept of introducing a fillet at the chimney base of solar updraft tower plant and thereby improving the performance: A numerical study," Renewable Energy, Elsevier, vol. 179(C), pages 37-46.
    5. Arefian, Amir & Hosseini-Abardeh, Reza & Rahimi-Larki, Mohsen & Torkfar, Arman & Sarlak, Hamid, 2024. "A comprehensive analysis of time-dependent performance of a solar chimney power plant equipped with a thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Sedighi, Ali Asghar & Deldoost, Zeynab & Karambasti, Bahram Mahjoob, 2020. "Effect of thermal energy storage layer porosity on performance of solar chimney power plant considering turbine pressure drop," Energy, Elsevier, vol. 194(C).
    7. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    8. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    10. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    11. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    12. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    13. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    14. Srikanth Reddy & Lokesh Panwar & Bijaya Ketan Panigrahi & Rajesh Kumar & Lalit Goel & Ameena Saad Al-Sumaiti, 2020. "A profit-based self-scheduling framework for generation company energy and ancillary service participation in multi-constrained environment with renewable energy penetration," Energy & Environment, , vol. 31(4), pages 549-569, June.
    15. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant," Energy, Elsevier, vol. 120(C), pages 1-11.
    16. Hassan Zohair Hassan, 2023. "Performance Enhancement of the Basic Solar Chimney Power Plant Integrated with an Adsorption Cooling System with Heat Recovery from the Condenser," Energies, MDPI, vol. 17(1), pages 1-35, December.
    17. Shiyu Zhou & Xiaoqian Wang & Hanbing Jia & Jiying Liu, 2024. "Optimal Design of Air Treatment for an Adsorption Water-Harvesting System," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    18. Hosseinkhani, A. & Gandjalikhan Nassab, S.A., 2024. "Study of gas radiation effect on the performance of single-pass solar heaters with an air gap," Energy, Elsevier, vol. 294(C).
    19. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    20. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:494-:d:1022716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.