IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5945-d1433711.html
   My bibliography  Save this article

Comparative Energy and Economic Analysis of Dish Stirling Engine and National Grid Electricity for Residential Building in Mafraq, Jordan

Author

Listed:
  • Habes Ali Khawaldeh

    (Renewable Energy Engineering Department, Faculty of Engineering, Al Al-Bayt University, Mafraq 25113, Jordan)

  • Bashar Shboul

    (Renewable Energy Engineering Department, Faculty of Engineering, Al Al-Bayt University, Mafraq 25113, Jordan)

  • Mohammad Al-Smairan

    (Renewable Energy Engineering Department, Faculty of Engineering, Al Al-Bayt University, Mafraq 25113, Jordan)

  • Mohammad Al-Soeidat

    (Department of Electrical Engineering, Al-Hussein Bin Talal University, Ma’an 71111, Jordan)

  • Dylan Lu

    (Faculty of Engineering and Information Technology, School of Electrical and Data Engineering, University of Technology Sydney, Sydney 2007, Australia)

  • Fares Almomani

    (Department of Chemical Engineering, Qatar University, Doha 2713, Qatar)

Abstract

The primary purpose of this research is to determine the most economical approach to installing a solar dish Stirling engine (SDSE) system on a building for residential purposes in Mafraq while taking into account the local weather, usual monthly consumption of energy and the prices charged by the local powered utility. The house uses an average of 622.25 kWh of energy every month, with the highest consumption in February and the lowest in May. A range of optical efficiencies between 50% and 98% are used to mount the SDSE system. This study evaluated the relationship between the price of electrical energy and the amount of power consumed to identify the times of day when energy consumption is highest. Another approach relevant to consider is solar power, which likewise varies across the whole year. When the available intensity of the sun and power rates are at their peak, an SDSE system is regarded as a feasible solution for fulfilling the energy requirements. This is because SDSE systems can still make electricity even during cloudy days. This work also includes a comprehensive analysis of the solar power that an SDSE receives and the generated electrical power.

Suggested Citation

  • Habes Ali Khawaldeh & Bashar Shboul & Mohammad Al-Smairan & Mohammad Al-Soeidat & Dylan Lu & Fares Almomani, 2024. "Comparative Energy and Economic Analysis of Dish Stirling Engine and National Grid Electricity for Residential Building in Mafraq, Jordan," Sustainability, MDPI, vol. 16(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5945-:d:1433711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georg Klepp, 2025. "Solar Stirling for Renewable Energy Multigeneration Systems," Sustainability, MDPI, vol. 17(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    3. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    4. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    5. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    6. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    7. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    8. Jining Wang & Xuewei Zhao & Lei Wang, 2024. "Prediction of China’s Carbon Price Based on the Genetic Algorithm–Particle Swarm Optimization–Back Propagation Neural Network Model," Sustainability, MDPI, vol. 17(1), pages 1-18, December.
    9. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Ramesh Chitharaj & Hariprasad Perumal & Mohammed Almeshaal & P. Manoj Kumar, 2025. "Optimizing Performance of a Solar Flat Plate Collector for Sustainable Operation Using Box–Behnken Design (BBD)," Sustainability, MDPI, vol. 17(2), pages 1-23, January.
    11. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    12. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    13. Georgios Giakoumakis & Dimitrios Sidiras, 2025. "Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies," Energies, MDPI, vol. 18(3), pages 1-41, January.
    14. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    15. Asif Raihan & Sadman Anjum Joarder & Tapan Sarker & Blanka Gosik & Dariusz Kusz & Grzegorz Zimon, 2024. "Renewable Energy in Nepal: Current State and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 395-407, November.
    16. Klamka, Jonas & Wolf, André & Ehrlich, Lars G., 2020. "Photovoltaic self-consumption after the support period: Will it pay off in a cross-sector perspective?," Renewable Energy, Elsevier, vol. 147(P1), pages 2374-2386.
    17. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    18. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    19. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    20. Elaheh Shobeiri & Filippo Genco & Daniel Hoornweg & Akira Tokuhiro, 2024. "A Strategic Framework for Net-Zero Transitions: Integrating Fuzzy Logic and the DICE Model for Optimizing Ontario’s Energy Future," Energies, MDPI, vol. 17(24), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5945-:d:1433711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.