IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4941-d856818.html
   My bibliography  Save this article

Bioengineering and Molecular Biology of Miscanthus

Author

Listed:
  • Evgeny Chupakhin

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Olga Babich

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Stanislav Sukhikh

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Svetlana Ivanova

    (Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
    Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

  • Ekaterina Budenkova

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Olga Kalashnikova

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Alexander Prosekov

    (Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

  • Olga Kriger

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia)

  • Vyacheslav Dolganyuk

    (Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
    Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia)

Abstract

Miscanthus is a perennial wild plant that is vital for the production of paper and roofing, as well as horticulture and the development of new high-yielding crops in temperate climates. Chromosome-level assembly of the ancient tetraploid genome of miscanthus chromosomes is reported to provide resources that can link its chromosomes to related diploid sorghum and complex polyploid sugarcane. Analysis of Miscanthus sinensis and Miscanthus sacchariflorus showed intense mixing and interspecific hybridization and documented the origin of a high-yielding triploid bioenergetic plant, Miscanthus × giganteus . The Miscanthus genome expands comparative genomics functions to better understand the main abilities of Andropogoneae herbs. Miscanthus × giganteus is widely regarded as a promising lignocellulosic biomass crop due to its high-biomass yield, which does not emit toxic compounds into the environment, and ability to grow in depleted lands. The high production cost of lignocellulosic bioethanol limits its commercialization. The main components that inhibit the enzymatic reactions of fermentation and saccharification are lignin in the cell wall and its by-products released during the pre-treatment stage. One approach to overcoming this barrier could be to genetically modify the genes involved in lignin biosynthesis, manipulating the lignin content and composition of miscanthus.

Suggested Citation

  • Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4941-:d:856818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaime Barros & Luis Escamilla-Trevino & Luhua Song & Xiaolan Rao & Juan Carlos Serrani-Yarce & Maite Docampo Palacios & Nancy Engle & Feroza K. Choudhury & Timothy J. Tschaplinski & Barney J. Venables, 2019. "4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Olga Kriger, 2021. "Methods of Increasing Miscanthus Biomass Yield for Biofuel Production," Energies, MDPI, vol. 14(24), pages 1-30, December.
    3. Emily Heaton & Stephen Long & Thomas Voigt & Michael Jones & John Clifton-Brown, 2004. "Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 433-451, October.
    4. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    5. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    3. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    5. Hugo Gaspar Hernandez-Palma & Dairo J. Novoa & Jorge Enrique Taboada à lvarez, 2024. "New Trends in Green Projects Aimed at Clean Energy: An Analysis of the Scientific Literature," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 278-286, November.
    6. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    7. Xilin Zhang & Yuejin Tan & Zhiwei Yang, 2018. "Rework Quantification and Influence of Rework on Duration and Cost of Equipment Development Task," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    8. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    9. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    10. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    11. Hariyani, Dharmendra & Mishra, Sanjeev & Hariyani, Poonam & Sharma, Milind Kumar, 2023. "Drivers and motives for sustainable manufacturing system," Innovation and Green Development, Elsevier, vol. 2(1).
    12. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    13. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    14. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    15. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    16. Pablo David Necoechea-Porras & Asunción López & Juan Carlos Salazar-Elena, 2021. "Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    17. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    18. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    19. Asif Raihan & Sadman Anjum Joarder & Tapan Sarker & Blanka Gosik & Dariusz Kusz & Grzegorz Zimon, 2024. "Renewable Energy in Nepal: Current State and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 395-407, November.
    20. Tyas Yuli Rosiani & Dana Marsetiya Utama & Ameilia Yuniar Ummudiyah & Ikhlasul Amallynda, 2024. "Sustainable Manufacturing Assessment using Sustainable VSM and AHP involving Workload and Machine Efficiency: A Case Study in Indonesian Paving Block Production," Circular Economy and Sustainability, Springer, vol. 4(3), pages 2049-2071, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4941-:d:856818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.