IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3304-d1118063.html
   My bibliography  Save this article

Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas

Author

Listed:
  • Maxim Belonogov

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Vadim Dorokhov

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Dmitrii Glushkov

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Daria Kuznechenkova

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

  • Daniil Romanov

    (Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia)

Abstract

An experimental study of the ignition and combustion processes of coal-water slurry (CWS) droplets based on coal enrichment waste in a high-temperature oxidizer at 650–850 °C with a syngas addition was carried out. The fuel slurry was a mixture of finely dispersed solid combustible particles (coal sludge, 10–100 µm in size) and water. The syngas was a product of biomass pyrolysis and two waste-derived fuels in a laboratory gasifier. Composition of the syngas was controlled by a precision analytical gas analyzer. The feasibility of co-firing CWS with syngas was experimentally established. Under such conditions, the CWS droplets ignition process was intensified by 15–40%, compared to fuel combustion without the addition of syngas to the combustion chamber. The greatest positive effect was achieved by adding the gas obtained during the biomass pyrolysis. The ignition delay times of CWS droplets are 5.2–12.5 s versus 6.1–20.4 s (lower by 15–39%) when ignited in a high-temperature medium without adding syngas to the combustion chamber. Based on the results obtained, a concept for the practical implementation of the CWS combustion technology in a syngas-modified oxidizer medium is proposed.

Suggested Citation

  • Maxim Belonogov & Vadim Dorokhov & Dmitrii Glushkov & Daria Kuznechenkova & Daniil Romanov, 2023. "Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas," Energies, MDPI, vol. 16(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3304-:d:1118063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    2. Jianzhong, Liu & Ruikun, Wang & Jianfei, Xi & Junhu, Zhou & Kefa, Cen, 2014. "Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid," Applied Energy, Elsevier, vol. 115(C), pages 309-319.
    3. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    4. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    5. Dmitry Antonov & Jérôme Bellettre & Dominique Tarlet & Patrizio Massoli & Olga Vysokomornaya & Maxim Piskunov, 2018. "Impact of Holder Materials on the Heating and Explosive Breakup of Two-Component Droplets," Energies, MDPI, vol. 11(12), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    2. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    3. Vadim Dorokhov & Geniy Kuznetsov & Galina Nyashina, 2022. "Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form," Energies, MDPI, vol. 15(24), pages 1-23, December.
    4. Xing, Yuxuan & Huang, Jingchun & Wang, Zhenqi & Hu, Wei & Xu, Minghou & Qiao, Yu, 2024. "Transformation and control of organic sulfur during pyrolysis of sludge under conditions relevant to smoldering combustion: Role of oxygen and CaO," Energy, Elsevier, vol. 309(C).
    5. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    6. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    7. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    8. Ni, Zhanshi & Zhang, Yaokun & Liu, Xiang & Shi, Hao & Yao, Yurou & Tian, Junjian & Hu, Peng & He, Liqun & Lin, Qizhao & Liu, Lvdan, 2024. "Co-combustion of sewage sludge with corn stalk based on TG-MS and TG-DSC: Gas products, interaction mechanisms, and kinetic behavior," Energy, Elsevier, vol. 308(C).
    9. Coskun, Can & Oktay, Zuhal & Koksal, Tunc & Birecikli, Bahadır, 2020. "Co-combustion of municipal dewatered sewage sludge and natural gas in an actual power plant," Energy, Elsevier, vol. 211(C).
    10. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    11. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    12. Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
    13. Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
    14. Kuznetsov, G.V. & Malyshev, D. Yu & Kostoreva, Zh.A. & Syrodoy, S.V. & Gutareva, N. Yu., 2020. "The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism," Energy, Elsevier, vol. 201(C).
    15. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    16. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    17. Zhang, Zongxi & Zhou, Yuguang & Zhao, Nan & Li, Huan & Tohniyaz, Bahargul & Mperejekumana, Philbert & Hong, Quan & Wu, Rucong & Li, Gang & Sultan, Muhammad & Zayan, Ali Mohammed Ibrahim & Cao, Jinxin , 2021. "Clean heating during winter season in Northern China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    19. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.
    20. Alexander Ashikhmin & Nikita Khomutov & Roman Volkov & Maxim Piskunov & Pavel Strizhak, 2023. "Effect of Monodisperse Coal Particles on the Maximum Drop Spreading after Impact on a Solid Wall," Energies, MDPI, vol. 16(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3304-:d:1118063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.