IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317230.html
   My bibliography  Save this article

Co-combustion of municipal dewatered sewage sludge and natural gas in an actual power plant

Author

Listed:
  • Coskun, Can
  • Oktay, Zuhal
  • Koksal, Tunc
  • Birecikli, Bahadır

Abstract

This study mainly aimed to determine the performance of the co-combustion of municipal dewatered sewage sludge and natural gas by using actual power plant data for the first time and adding it to published literature. Through a consideration of energy, a thermodynamic analysis of a power plant using municipal sewage sludge was carried out using actual plant data to assess its energetic performance. The fictive molecule C4·13H8·58O2N0·61S0.04 was obtained from the average chemical composition of the dry-based municipal sewage sludge. Energy losses in the plant and its units were determined. The net plant energy efficiencies were found to be 9.095%. The power plant produced 121 Wh of electricity per kg of municipal dewatered sewage sludge. The average value of CO2 emissions from electricity generation was found to be 888 g of CO2/kWhe. Power capacity of 1 MW can eliminate 72,406.7 tonnes of municipal dewatered sewage sludge annually. In an investigated city, 36.93 g of dry sewage sludge was produced per capita per day.

Suggested Citation

  • Coskun, Can & Oktay, Zuhal & Koksal, Tunc & Birecikli, Bahadır, 2020. "Co-combustion of municipal dewatered sewage sludge and natural gas in an actual power plant," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317230
    DOI: 10.1016/j.energy.2020.118615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coskun, C. & Oktay, Z. & Ilten, N., 2009. "A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition," Energy, Elsevier, vol. 34(11), pages 1898-1902.
    2. Andreas Nordin & Anna Strandberg & Sana Elbashir & Lars-Erik Åmand & Nils Skoglund & Anita Pettersson, 2020. "Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash," Energies, MDPI, vol. 13(7), pages 1-24, April.
    3. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
    4. Kuan, Yong-Hao & Wu, Fang-Hsien & Chen, Guan-Bang & Lin, Hsien-Tsung & Lin, Ta-Hui, 2020. "Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends," Energy, Elsevier, vol. 201(C).
    5. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    6. Zhao, Zhenghui & Wang, Ruikun & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Bottom ash characteristics and pollutant emission during the co-combustion of pulverized coal with high mass-percentage sewage sludge," Energy, Elsevier, vol. 171(C), pages 809-818.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yaping & Lin, Junhao & Liao, Qinxiong & Sun, Shichang & Ma, Rui & Fang, Lin & Liu, Xiangli, 2021. "CO2-assisted catalytic municipal sludge for carbonaceous biofuel via sub- and supercritical water gasification," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
    2. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    3. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    4. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    5. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    6. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    7. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    8. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    9. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    10. Shangdiar, Sumarlin & Lin, Yuan-Chung & Cheng, Pei-Cheng & Chou, Feng-Chih & Wu, Wen-Ding, 2021. "Development of biochar from the refuse derived fuel (RDF) through organic / inorganic sludge mixed with rice straw and coconut shell," Energy, Elsevier, vol. 215(PB).
    11. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    12. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    13. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    14. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    15. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    16. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    17. Klimenko, A. & Shlegel, N.E. & Strizhak, P.A., 2023. "Breakup of colliding droplets and particles produced by heavy fuel oil pyrolysis," Energy, Elsevier, vol. 283(C).
    18. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    19. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    20. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.