IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v120y2017icp34-46.html
   My bibliography  Save this article

Maximum combustion temperature for coal-water slurry containing petrochemicals

Author

Listed:
  • Strizhak, Pavel A.
  • Vershinina, Ksenia Yu.

Abstract

This study examines the temperature change of droplets of coal-water slurry containing petrochemicals (CWSP). The slurry consists of coal and oil processing waste. The temperature of oxidant in a modelled combustion chamber is varied between 600 and 1200 K. The initial size (radius) of CWSP droplets varied in the range of 0.5–3 mm. The study identifies typical temperature trends at the center and on the surface of the CWSP droplet. The temperature trends represent the following stages: (i) heating of fuel, (ii) evaporation of water and a liquid combustible component, (iii) thermal decomposition of coal and yield of volatiles, (iv) gas phase ignition of volatiles together with vapor of the combustible liquid, and (v) heterogeneous ignition of carbon and its burnout. Moreover, these trends indicate the maximum combustion temperatures of CWSP that reflect corresponding heat release. The study specifies the parameters which influence the maximum combustion temperature: fuel component composition, properties of components, droplet size, and the oxidant temperature. Finally, the study defines the minimum ignition temperatures and delay times of sustainable combustion initiation that characterize the ignition inertia. The knowledge of influence of these factors will allow one to predict the optimal conditions for the combustion of the CWSP.

Suggested Citation

  • Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:34-46
    DOI: 10.1016/j.energy.2016.12.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216319107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    2. Wamankar, Arun Kumar & Murugan, S., 2015. "Review on production, characterisation and utilisation of solid fuels in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 249-262.
    3. Ge, Lan & Gong, Xuzhong & Wang, Zhi & Zhao, Lixin & Wang, Yuhua & Wang, Mingyong, 2016. "Insight of anode reaction for CWS (coal water slurry) electrolysis for hydrogen production," Energy, Elsevier, vol. 96(C), pages 372-382.
    4. Soloiu, Valentin & Lewis, Jeffery & Yoshihara, Yoshinobu & Nishiwaki, Kazuie, 2011. "Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance," Energy, Elsevier, vol. 36(7), pages 4353-4371.
    5. Jianzhong, Liu & Ruikun, Wang & Jianfei, Xi & Junhu, Zhou & Kefa, Cen, 2014. "Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid," Applied Energy, Elsevier, vol. 115(C), pages 309-319.
    6. Deng, Shengxiang & Zhou, Jiemin, 2011. "An experimental study of the effect of water content on combustion of coal tar/water emulsion droplets," Energy, Elsevier, vol. 36(10), pages 6130-6137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    2. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    3. Galina Nyashina & Jean Claude Legros & Pavel Strizhak, 2017. "Environmental Potential of Using Coal-Processing Waste as the Primary and Secondary Fuel for Energy Providers," Energies, MDPI, vol. 10(3), pages 1-11, March.
    4. Agnieszka Saramak & Daniel Saramak, 2022. "Coal Modeling Investigations in International Collaboration in the Light of Bibliometric Analysis of the Problem," Energies, MDPI, vol. 15(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vershinina, Ksenia Yu & Kuznetsov, Genii V. & Strizhak, Pavel A., 2017. "Sawdust as ignition intensifier of coal water slurries containing petrochemicals," Energy, Elsevier, vol. 140(P1), pages 69-77.
    2. Antonov, Dmitri V. & Valiullin, Timur R. & Iegorov, Roman I. & Strizhak, Pavel A., 2017. "Effect of macroscopic porosity onto the ignition of the waste-derived fuel droplets," Energy, Elsevier, vol. 119(C), pages 1152-1158.
    3. Wamankar, Arun Kumar & Murugan, S., 2015. "Review on production, characterisation and utilisation of solid fuels in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 249-262.
    4. Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
    5. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    6. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Dutta, Rohan & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2011. "Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier," Energy, Elsevier, vol. 36(5), pages 3204-3214.
    8. Rocío Maceiras & Víctor Alfonsín & Luis Seguí & Juan F. González, 2021. "Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol," Energies, MDPI, vol. 14(18), pages 1-10, September.
    9. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    10. Ridoan Karim & Mohammad Ershadul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abu Bakar Munir & Ahmed Imran Kabir & Jorge Alfredo Ardila-Rey & Abdullahi Abubakar Mas’ud, 2018. "Nuclear Energy Development in Bangladesh: A Study of Opportunities and Challenges," Energies, MDPI, vol. 11(7), pages 1-15, June.
    11. Roshan, Gh.R. & Orosa, J.A & Nasrabadi, T., 2012. "Simulation of climate change impact on energy consumption in buildings, case study of Iran," Energy Policy, Elsevier, vol. 49(C), pages 731-739.
    12. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    13. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    14. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    15. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    16. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    17. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    18. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    19. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    20. Johnson, Neil & Kang, Jian & Hathway, Elizabeth Abigail, 2014. "Acoustics of weirs: Potential implications for micro-hydropower noise," Renewable Energy, Elsevier, vol. 71(C), pages 351-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:34-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.