IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023143.html
   My bibliography  Save this article

Acceleration effect of BDO tar on coal water slurry during co-gasification

Author

Listed:
  • Mao, Lirui
  • Zheng, Mingdong
  • Li, Hanxu

Abstract

1,4-butanediol (BDO) is a general-purpose chemical feedstock. BDO tar is produced from the plant and is difficult to dispose of. This study has used the waste-coal-water-slurry (WCWS) technology to dispose of BDO tar and investigated the acceleration mechanism during co-gasification. The results show that the weight loss of BDO-tar-coal-water-slurry (BCWS) is more evident in the range of 200–300 °C because most of the organic constituents in BDO tar are lost. In the high-temperature field (>600 °C), the BCWS thermogravimetric (TG) curves migrate to the low-temperature zone, indicating that the co-gasification performance of the BCWS is significantly enhanced. The most distinct areas (“spotted area,” “rough area,” and “subsidence area”) exist on the surface of coal char by the alkali metal Na in BDO tar, which impedes the formation of defective carbon structures and amorphous carbon structures. Moreover, many defective and amorphous carbon emerged due to the tightly bound complexes with O and Na generated by the reaction between the unstable intermediate and the carbon matrix. BDO tar for BCWS co-gasification process is catalytic, suggesting that activation energy is lower than that of CWS.

Suggested Citation

  • Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023143
    DOI: 10.1016/j.energy.2022.125432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    2. Zhang, Heng & Li, Junguo & Yang, Xin & Song, Shuangshuang & Wang, Zhiqing & Huang, Jiejie & Zhang, Yongqi & Fang, Yitian, 2020. "Influence of coal ash on CO2 gasification reactivity of corn stalk char," Renewable Energy, Elsevier, vol. 147(P1), pages 2056-2063.
    3. Li, Dedi & Liu, Jianzhong & Wang, Shuangni & Cheng, Jun, 2020. "Study on coal water slurries prepared from coal chemical wastewater and their industrial application," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    2. Zhao, Jingyu & Wang, Tao & Deng, Jun & Shu, Chi-Min & Zeng, Qiang & Guo, Tao & Zhang, Yuxuan, 2020. "Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR," Energy, Elsevier, vol. 209(C).
    3. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    4. Piskunov, Maxim & Romanov, Daniil & Strizhak, Pavel, 2023. "Stability and rheology of carbon-containing composite liquid fuels under subambient temperatures," Energy, Elsevier, vol. 278(PA).
    5. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.
    6. Vadim Dorokhov & Geniy Kuznetsov & Galina Nyashina, 2022. "Combustion of Coal and Coal Slime in Steam-Air Environment and in Slurry Form," Energies, MDPI, vol. 15(24), pages 1-23, December.
    7. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Ren, Yangguang & Xu, Zhiqiang & Gu, Suqian, 2022. "Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke," Energy, Elsevier, vol. 252(C).
    9. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    10. Hammerton, James M. & Li, Hu & Ross, Andrew B., 2020. "Char-diesel slurry fuels for microgeneration: Emission characteristics and engine performance," Energy, Elsevier, vol. 207(C).
    11. Zhang, Nan & Wang, Guangwei & Yu, Chunmei & Zhang, Jianliang & Dang, Han & Zhang, Cuiliu & Ning, Xiaojun & Wang, Chuan, 2022. "Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization," Energy, Elsevier, vol. 238(PA).
    12. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    13. Konstantin Osintsev & Sergei Aliukov & Anatoliy Alabugin, 2022. "A Review of Methods, and Analytical and Experimental Studies on the Use of Coal–Water Suspensions," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    14. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    15. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    16. Song, Weiming & Huang, Yifeng & Chen, Xiaoqing & Jiang, Rui & Li, Yujie & Zhou, Jianan, 2023. "CO2 gasification of dry quenching dust ash catalyzed in situ by soot," Renewable Energy, Elsevier, vol. 211(C), pages 595-606.
    17. Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
    18. Ren, Yangguang & Lv, Ziqi & Xu, Zhiqiang & Wang, Qun & Wang, Zhe, 2023. "Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model," Energy, Elsevier, vol. 281(C).
    19. Gvozdyakov, Dmitry & Zenkov, Andrey, 2021. "Improvement of atomization characteristics of coal-water slurries," Energy, Elsevier, vol. 230(C).
    20. Maxim Belonogov & Vadim Dorokhov & Dmitrii Glushkov & Daria Kuznechenkova & Daniil Romanov, 2023. "Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.