IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2602-d785844.html
   My bibliography  Save this article

Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms

Author

Listed:
  • Saeed Salah

    (Department of Computer Science, Al-Quds University, P.O. Box 89, Abu-Dies, Jerusalem 20002, Palestine)

  • Husain R. Alsamamra

    (Department of Physics, Al-Quds University, P.O. Box 89, Abu-Dies, Jerusalem 20002, Palestine)

  • Jawad H. Shoqeir

    (Department of Earth and Environmental Sciences, Al-Quds University, P.O. Box 89, Abu-Dies, Jerusalem 20002, Palestine)

Abstract

Wind energy is one of the fastest growing sources of energy worldwide. This is clear from the high volume of wind power applications that have been increased in recent years. However, the uncertain nature of wind speed induces several challenges towards the development of efficient applications that require a deep analysis of wind speed data and an accurate wind energy potential at a site. Therefore, wind speed forecasting plays a crucial rule in reducing this uncertainty and improving application efficiency. In this paper, we experimented with several forecasting models coming from both machine-learning and deep-learning paradigms to predict wind speed in a metrological wind station located in East Jerusalem, Palestine. The wind speed data were obtained, modelled, and forecasted using six machine-learning techniques, namely Multiple Linear Regression (MLR), lasso regression, ridge regression, Support Vector Regression (SVR), random forest, and deep Artificial Neural Network (ANN). Five variables were considered to develop the wind speed prediction models: timestamp, hourly wind speed, pressure, temperature, and direction. The performance of the models was evaluated using four statistical error measures: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination ( R 2 ). The experimental results demonstrated that the random forest followed by the LSMT-RNN outperformed the other techniques in terms of wind speed prediction accuracy for the study site.

Suggested Citation

  • Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2602-:d:785844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    2. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    3. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
    4. Yarmohammadi, Mohammad J. & Sadeghzadeh, Arash & Taghizadeh, Mostafa, 2020. "Gain-scheduled control of wind turbine exploiting inexact wind speed measurement for full operating range," Renewable Energy, Elsevier, vol. 149(C), pages 890-901.
    5. Mathew, Sathyajith & Pandey, K.P. & Kumar.V, Anil, 2002. "Analysis of wind regimes for energy estimation," Renewable Energy, Elsevier, vol. 25(3), pages 381-399.
    6. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    7. López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
    8. Cetinay, Hale & Kuipers, Fernando A. & Guven, A. Nezih, 2017. "Optimal siting and sizing of wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 51-58.
    9. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    11. Lazić, Lazar & Pejanović, Goran & Živković, Momčilo, 2010. "Wind forecasts for wind power generation using the Eta model," Renewable Energy, Elsevier, vol. 35(6), pages 1236-1243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoli Tang & Xinhua Tao & Yuanyuan Wei & Ziyue Tong & Fangzheng Zhu & Han Lin, 2022. "Analysis and Prediction of Wind Speed Effects in East Asia and the Western Pacific Based on Multi-Source Data," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    2. Adam Maryniak & Marian Banaś & Piotr Michalak & Jakub Szymiczek, 2024. "Forecasting of Daily Heat Production in a District Heating Plant Using a Neural Network," Energies, MDPI, vol. 17(17), pages 1-19, September.
    3. Daghigh, Roonak & Arshad, Siamand Azizi & Ensafjoee, Koosha & Hajialigol, Najmeh, 2024. "A data-driven model for a liquid desiccant regenerator equipped with an evacuated tube solar collector: Random forest regression, support vector regression and artificial neural network," Energy, Elsevier, vol. 295(C).
    4. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    5. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    6. Piotr Michalak, 2023. "Simulation of a Building with Hourly and Daily Varying Ventilation Flow: An Application of the Simulink S-Function," Energies, MDPI, vol. 16(24), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
    2. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    3. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    4. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    5. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
    8. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    9. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    11. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    12. Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    13. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    14. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    15. Alma Y. Alanis & Oscar D. Sanchez & Jesus G. Alvarez, 2021. "Time Series Forecasting for Wind Energy Systems Based on High Order Neural Networks," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    16. Namrye Son & Seunghak Yang & Jeongseung Na, 2019. "Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory," Energies, MDPI, vol. 12(20), pages 1-17, October.
    17. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    18. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    19. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    20. Vogel, E.E. & Saravia, G. & Kobe, S. & Schumann, R. & Schuster, R., 2018. "A novel method to optimize electricity generation from wind energy," Renewable Energy, Elsevier, vol. 126(C), pages 724-735.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2602-:d:785844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.