IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1055-d1344511.html
   My bibliography  Save this article

Co-Pyrolysis of Woody Biomass and Oil Shale—A Kinetics and Modelling Study

Author

Listed:
  • Alejandro Lyons Ceron

    (Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Richard Ochieng

    (Department of Manufacturing and Civil Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway)

  • Shiplu Sarker

    (Department of Manufacturing and Civil Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway)

  • Oliver Järvik

    (Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Alar Konist

    (Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia)

Abstract

The co-pyrolysis of biomass and fossil fuels has been the subject of studies on sustainable energy. Co-feeding oil shale with woody biomass can contribute to a transition into carbon neutrality. The present study analysed the thermal decomposition behaviour of oil shale and biomass blends (0:1, 3:7, 1:1, 7:3, 9:1, and 1:0) through thermogravimetric analysis (TGA) at 80–630 °C with a heating rate of 10 °C/min in CO 2 and N 2 atmospheres. A comparison of theoretical and experimental residual mass yields of oil shale–biomass mixtures indicated no significant interactions between the fuels. The blends contributed to a decrease of up to 34.4 wt% in solid residues compared to individual pyrolysis of oil shale, and the TGA curves were shifted from up to 10 °C to a lower temperature when the biomass ratio increased. The use of a CO 2 atmosphere resulted in the production of solid residues, comparable to the one obtained with the N 2 atmosphere. CO 2 atmosphere can be used in oil shale–biomass co-pyrolysis, without affecting the decomposition process or increasing the yield of residues. A kinetic model method is proposed based on TGA data at 10, 20, and 30 °C/min. The apparent activation energies for a temperature range of 200–520 °C were in the order of 139, 155, 164, 197, 154, and 167 kJ/mol for oil shale–biomass 0:1, 3:7, 1:1, 7:3, 9:1, and 1:0 blends, respectively. From the isoconversional kinetic analysis, a two-stage pyrolysis was observed, which separated biomass and oil shale pyrolysis. A simulation of biomass and oil shale co-pyrolysis was conducted in Aspen Plus ® using TGA-derived kinetic data. The model prediction resulted in a close match with the experimental thermogravimetric data with absolute errors from 1.75 to 3.78%, which highlights the relevance of TGA analysis in simulating co-pyrolysis processes.

Suggested Citation

  • Alejandro Lyons Ceron & Richard Ochieng & Shiplu Sarker & Oliver Järvik & Alar Konist, 2024. "Co-Pyrolysis of Woody Biomass and Oil Shale—A Kinetics and Modelling Study," Energies, MDPI, vol. 17(5), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1055-:d:1344511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    2. Han, X.X. & Jiang, X.M. & Cui, Z.G., 2009. "Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale," Applied Energy, Elsevier, vol. 86(11), pages 2381-2385, November.
    3. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    4. Haykiri-Acma, H. & Yaman, S., 2010. "Interaction between biomass and different rank coals during co-pyrolysis," Renewable Energy, Elsevier, vol. 35(1), pages 288-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Lyons Cerón & Alar Konist, 2023. "Co-Pyrolysis of Woody Biomass and Oil Shale in a Batch Reactor in CO 2 , CO 2 -H 2 O, and Ar Atmospheres," Energies, MDPI, vol. 16(7), pages 1-14, March.
    2. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    3. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    4. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    5. Mushtaq, Faisal & Mat, Ramli & Ani, Farid Nasir, 2014. "A review on microwave assisted pyrolysis of coal and biomass for fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 555-574.
    6. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    7. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    8. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    9. Si, Mengting & Liu, Jiani & Zhang, Yindi & Liu, Bing & Luo, Zixue & Cheng, Qiang, 2024. "Effect of co-combustion of coal with biomass on the morphology of soot," Renewable Energy, Elsevier, vol. 226(C).
    10. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    11. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    12. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    14. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    15. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    16. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    18. Qi, Ye & Lu, Jiaqi & Liu, Tianle, 2024. "Measuring energy transition away from fossil fuels: A new index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    19. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    20. Xiaolei Zhang & Qiwen Zhou & Lili Wang & Bo Wan & Qiannan Yang, 2024. "How Biochar Addition Affects Denitrification and the Microbial Electron Transport System (ETSA): A Meta-Analysis Based on a Global Scale," Agriculture, MDPI, vol. 14(12), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1055-:d:1344511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.