IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2957-d1105795.html
   My bibliography  Save this article

A Mathematical Model for Home Appliances in a DC Home Nanogrid

Author

Listed:
  • Miguel Cordova-Fajardo

    (Departamento de Ciencias Básicas, Instituto Tecnológico de Lázaro Cárdenas, Lázaro Cárdenas CP 60950, Michoacan, Mexico
    Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia CP 58060, Michoacan, Mexico
    These authors contributed equally to this work.)

  • Eduardo S. Tututi

    (Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia CP 58060, Michoacan, Mexico
    These authors contributed equally to this work.)

Abstract

A mathematical model for nonlinear loads, that contains, in its design, a switching power supply is presented. The model was tested in home appliances operating in a Direct Current Home Nanogrid (DCHN). Compact Fluorescent Lamps (CFLs) and LED lamps were used as nonlinear loads to study, through the model, the experimental results in the profile of ripple in voltage and current of the lamps. The profile of ripples, due to the home appliances, could be explained by the model, even in the simultaneous operation of two loads. Additionally, the effect of decreasing the ripple amplitude when an induction stove in standby mode was incorporated with the DCHN was analyzed.

Suggested Citation

  • Miguel Cordova-Fajardo & Eduardo S. Tututi, 2023. "A Mathematical Model for Home Appliances in a DC Home Nanogrid," Energies, MDPI, vol. 16(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2957-:d:1105795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheridan, Steve & Sunderland, Keith & Courtney, Jane, 2023. "Swarm electrification: A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Jianquan Liao & Niancheng Zhou & Qianggang Wang, 2018. "Design of Low-Ripple and Fast-Response DC Filters in DC Distribution Networks," Energies, MDPI, vol. 11(11), pages 1-20, November.
    3. G. Arunkumar & D. Elangovan & P. Sanjeevikumar & Jens Bo Holm Nielsen & Zbigniew Leonowicz & Peter K. Joseph, 2019. "DC Grid for Domestic Electrification," Energies, MDPI, vol. 12(11), pages 1-12, June.
    4. Natthanon Phannil & Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2018. "Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps," Energies, MDPI, vol. 11(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Lodetti & Izaskun Azcarate & José Julio Gutiérrez & Luis Alberto Leturiondo & Koldo Redondo & Purificación Sáiz & Julio J. Melero & Jorge Bruna, 2019. "Flicker of Modern Lighting Technologies Due to Rapid Voltage Changes," Energies, MDPI, vol. 12(5), pages 1-16, March.
    2. Jairo Hernández & Andrés A. Romero & Jan Meyer & Ana María Blanco, 2020. "Impact of Nonlinear Lighting Loads on the Neutral Conductor Current of Low Voltage Residential Grids," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Saeed Habibi & Ramin Rahimi & Mehdi Ferdowsi & Pourya Shamsi, 2021. "DC Bus Voltage Selection for a Grid-Connected Low-Voltage DC Residential Nanogrid Using Real Data with Modified Load Profiles," Energies, MDPI, vol. 14(21), pages 1-19, October.
    4. Khaled Taouil & Rahma Aloulou & Salma Bradai & Amal Gassara & Mohamed Wajdi Kharrat & Badii Louati & Michel Giordani, 2024. "P2P Energy Exchange Architecture for Swarm Electrification-Driven PV Communities," Energies, MDPI, vol. 17(15), pages 1-29, July.
    5. Umashankar Subramaniam & Sridhar Vavilapalli & Sanjeevikumar Padmanaban & Frede Blaabjerg & Jens Bo Holm-Nielsen & Dhafer Almakhles, 2020. "A Hybrid PV-Battery System for ON-Grid and OFF-Grid Applications—Controller-In-Loop Simulation Validation," Energies, MDPI, vol. 13(3), pages 1-19, February.
    6. Marcin Relich & Arkadiusz Gola & Małgorzata Jasiulewicz-Kaczmarek, 2022. "Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption," Energies, MDPI, vol. 15(24), pages 1-19, December.
    7. Ullah, Wasiq & Selema, Ahmed & Khan, Faisal, 2024. "Design and comparative analysis of dual rotor wound field excited flux switching generator for household DC microgrid system with rooftop wind turbine," Applied Energy, Elsevier, vol. 357(C).
    8. Joon-Ho Kim & Jin-O Kim, 2020. "Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks," Energies, MDPI, vol. 13(9), pages 1-14, May.
    9. Calin Ciugudeanu & Mircea Buzdugan & Dorin Beu & Angel Campianu & Catalin Daniel Galatanu, 2019. "Sustainable Lighting-Retrofit Versus Dedicated Luminaires-Light Versus Power Quality," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    10. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    11. Augusti Lindiya Susaikani & Subashini Nallusamy & Uma Dharmalingam & Yonis M. Buswig & Natarajan Prabaharan & Mohamed Salem, 2022. "Integrated PV–BESS-Fed High Gain Converter for an LED Lighting System in a Commercial Building," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    12. Przemysław Ptak & Krzysztof Górecki & Jakub Heleniak & Mariusz Orlikowski, 2021. "Investigations of Electrical and Optical Parameters of Some LED Luminaires—A Study Case," Energies, MDPI, vol. 14(6), pages 1-18, March.
    13. Alfredo Padilla-Medina & Francisco Perez-Pinal & Alonso Jimenez-Garibay & Antonio Vazquez-Lopez & Juan Martinez-Nolasco, 2020. "Design and Implementation of an Energy-Management System for a Grid-Connected Residential DC Microgrid," Energies, MDPI, vol. 13(16), pages 1-30, August.
    14. Sally E. Abdel Mohsen & Ahmed M. Ibrahim & Z. M. Salem Elbarbary & Ahmed I. Omar, 2023. "Unified Power Quality Conditioner Using Recent Optimization Technique: A Case Study in Cairo Airport, Egypt," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    15. Roberto Perillo Barbosa da Silva & Rodolfo Quadros & Hamid Reza Shaker & Luiz Carlos Pereira da Silva, 2019. "Analysis of the Electrical Quantities Measured by Revenue Meters Under Different Voltage Distortions and the Influences on the Electrical Energy Billing," Energies, MDPI, vol. 12(24), pages 1-18, December.
    16. Rodrigo De A. Teixeira & Werbet L. A. Silva & Guilherme A. P. De C. A. Pessoa & Joao T. Carvalho Neto & Elmer R. L. Villarreal & Andrés O. Salazar & Alberto S. Lock, 2020. "One Cycle Control of a PWM Rectifier a New Approach," Energies, MDPI, vol. 13(20), pages 1-23, October.
    17. Dariusz Smugala & Pawel Ptak & Michal Bonk, 2022. "Simulation Analysis of LED Stripes Drivers’ Influence on Electric Energy Quality," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2957-:d:1105795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.