IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3169-d183127.html
   My bibliography  Save this article

Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps

Author

Listed:
  • Natthanon Phannil

    (Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Chaiyan Jettanasen

    (Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Atthapol Ngaopitakkul

    (Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

Abstract

This paper proposes the study and analysis of harmonics, energy consumption and power quality of light emitting diode (LED) lamps equipped in building lighting systems. LED lamps with external (LED MR16) and internal (LED light bulb) drivers are investigated using an experimental setup to compare the results. The power quality of both LED lamps is studied by using a power quality meter to measure the generated harmonic currents from various case studies. The case study is divided into four major cases: one LED lamp is turned on with one driver, two LED lamps are turned on using the two drivers, eight LED lamps are turned on with one driver, and eight LED lamps are turned on with the eight drivers. As harmonics are related to total power factor (PF), which affects the energy savings of the building, hence, a filtering circuit to reduce harmonic current has been designed and implemented to improve power quality and/or power factor of the system. The different cases of harmonic filter insertion at the input of an LED lamp’s driver are discussed and then compared with a lighting standard to show the effectiveness of the passive filtering technique used in the studied system. In addition, the obtained result can be applied to both newly built and retrofitted buildings that aim to use LED technology to increase energy efficiency and decrease energy costs, and could be a helpful guide for end-users and manufacturers in addressing and developing LED issues.

Suggested Citation

  • Natthanon Phannil & Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2018. "Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps," Energies, MDPI, vol. 11(11), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3169-:d:183127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3169/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3169/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    2. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    3. Khan, N. & Abas, N., 2011. "Comparative study of energy saving light sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 296-309, January.
    4. Joud Al Dakheel & Kheira Tabet Aoul & Ahmed Hassan, 2018. "Enhancing Green Building Rating of a School under the Hot Climate of UAE; Renewable Energy Application and System Integration," Energies, MDPI, vol. 11(9), pages 1-14, September.
    5. Alberto Dolara & Sonia Leva, 2012. "Power Quality and Harmonic Analysis of End User Devices," Energies, MDPI, vol. 5(12), pages 1-14, December.
    6. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joon-Ho Kim & Jin-O Kim, 2020. "Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks," Energies, MDPI, vol. 13(9), pages 1-14, May.
    2. Rodrigo De A. Teixeira & Werbet L. A. Silva & Guilherme A. P. De C. A. Pessoa & Joao T. Carvalho Neto & Elmer R. L. Villarreal & Andrés O. Salazar & Alberto S. Lock, 2020. "One Cycle Control of a PWM Rectifier a New Approach," Energies, MDPI, vol. 13(20), pages 1-23, October.
    3. Jairo Hernández & Andrés A. Romero & Jan Meyer & Ana María Blanco, 2020. "Impact of Nonlinear Lighting Loads on the Neutral Conductor Current of Low Voltage Residential Grids," Energies, MDPI, vol. 13(18), pages 1-20, September.
    4. Stefano Lodetti & Izaskun Azcarate & José Julio Gutiérrez & Luis Alberto Leturiondo & Koldo Redondo & Purificación Sáiz & Julio J. Melero & Jorge Bruna, 2019. "Flicker of Modern Lighting Technologies Due to Rapid Voltage Changes," Energies, MDPI, vol. 12(5), pages 1-16, March.
    5. Calin Ciugudeanu & Mircea Buzdugan & Dorin Beu & Angel Campianu & Catalin Daniel Galatanu, 2019. "Sustainable Lighting-Retrofit Versus Dedicated Luminaires-Light Versus Power Quality," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    6. Roberto Perillo Barbosa da Silva & Rodolfo Quadros & Hamid Reza Shaker & Luiz Carlos Pereira da Silva, 2019. "Analysis of the Electrical Quantities Measured by Revenue Meters Under Different Voltage Distortions and the Influences on the Electrical Energy Billing," Energies, MDPI, vol. 12(24), pages 1-18, December.
    7. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    8. Miguel Cordova-Fajardo & Eduardo S. Tututi, 2023. "A Mathematical Model for Home Appliances in a DC Home Nanogrid," Energies, MDPI, vol. 16(7), pages 1-17, March.
    9. Przemysław Ptak & Krzysztof Górecki & Jakub Heleniak & Mariusz Orlikowski, 2021. "Investigations of Electrical and Optical Parameters of Some LED Luminaires—A Study Case," Energies, MDPI, vol. 14(6), pages 1-18, March.
    10. Dariusz Smugala & Pawel Ptak & Michal Bonk, 2022. "Simulation Analysis of LED Stripes Drivers’ Influence on Electric Energy Quality," Energies, MDPI, vol. 15(10), pages 1-21, May.
    11. Marcin Relich & Arkadiusz Gola & Małgorzata Jasiulewicz-Kaczmarek, 2022. "Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption," Energies, MDPI, vol. 15(24), pages 1-19, December.
    12. Sally E. Abdel Mohsen & Ahmed M. Ibrahim & Z. M. Salem Elbarbary & Ahmed I. Omar, 2023. "Unified Power Quality Conditioner Using Recent Optimization Technique: A Case Study in Cairo Airport, Egypt," Sustainability, MDPI, vol. 15(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    2. Miroslaw Wlas & Stanislaw Galla, 2018. "The Influence of LED Lighting Sources on the Nature of Power Factor," Energies, MDPI, vol. 11(6), pages 1-12, June.
    3. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    6. Sam Hampton & Richard Blundel & Aqueel Wahga & Tina Fawcett & Christopher Shaw, 2022. "Transforming small and medium‐sized enterprises to address the climate emergency: The case for values‐based engagement," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1424-1439, September.
    7. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    8. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    9. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    10. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.
    11. Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
    12. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    14. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    15. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    16. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
    18. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    19. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3169-:d:183127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.