IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p515-d1023058.html
   My bibliography  Save this article

Design of a Polymer Composition for the Conformance Control in Heterogeneous Reservoirs

Author

Listed:
  • Inzir Raupov

    (Department of Petroleum Engineering, Saint Petersburg Mining University, 199106 St. Petersburg, Russia)

  • Mikhail Rogachev

    (Department of Petroleum Engineering, Ufa State Petroleum Technological University, 450000 Ufa, Russia)

  • Julia Sytnik

    (Department of Petroleum Engineering, Saint Petersburg Mining University, 199106 St. Petersburg, Russia)

Abstract

The article is devoted to the issue of a low sweep efficiency in the heterogeneous terrigenous reservoirs containing remaining oil. Water plugging operations that redirect the injection fluid flows into unswept zones, are one approach to enhancing the oil recovery in these reservoirs. The commonly used chemical reagents in these treatments are acrylate polymer solutions. The polymer solutions must reach the target water-saturated zones and form a strong gel barrier there. Furthermore, the polymer compositions should have a low initial viscosity to provide a good injectivity and penetration ability. Therefore, the methods of adjusting the gelation time are necessary. There are numerous studies in modern scientific society devoted to the study of water-plugging polymer compositions. However, aspects, such as the effect of the hydrogen index on gelation, have received insufficient attention. In this paper, we describe the features of the developed polymer composition, based on a hydrolyzed polymer of acrylonitrile with a controlled gelation time for the chemically enhanced oil recovery. The component composition and the concentration levels were selected, based on the alterations in the hydrogen index of the polymer solution. It was scientifically proven that by adhering to a neutral hydrogen index, it is possible to improve the properties of the polymer composition. Moreover, using a model of a heterogeneous reservoir, it was confirmed that the proposed polymer composition achieves selective plugging. As a result of the polymer gel treatment, the water cut decreased by 4% and the displacement coefficient of oil increased by 20%, in comparison with the effect of the original composition without a gel-time modifier.

Suggested Citation

  • Inzir Raupov & Mikhail Rogachev & Julia Sytnik, 2023. "Design of a Polymer Composition for the Conformance Control in Heterogeneous Reservoirs," Energies, MDPI, vol. 16(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:515-:d:1023058
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dmitry Mardashov & Victor Duryagin & Shamil Islamov, 2021. "Technology for Improving the Efficiency of Fractured Reservoir Development Using Gel-Forming Compositions," Energies, MDPI, vol. 14(24), pages 1-14, December.
    2. Artem Shagiakhmetov & Svetlana Yushchenko, 2022. "Substantiation of In Situ Water Shut-Off Technology in Carbonate Oil Reservoirs," Energies, MDPI, vol. 15(14), pages 1-13, July.
    3. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    4. Aleksandra Palyanitsina & Elena Safiullina & Roman Byazrov & Dmitriy Podoprigora & Alexey Alekseenko, 2022. "Environmentally Safe Technology to Increase Efficiency of High-Viscosity Oil Production for the Objects with Advanced Water Cut," Energies, MDPI, vol. 15(3), pages 1-20, January.
    5. Ekaterina Leusheva & Valentin Morenov & Tianle Liu, 2021. "Dependence of the Equivalent Circulation Density of Formate Drilling Fluids on the Molecular Mass of the Polymer Reagent," Energies, MDPI, vol. 14(22), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina Leusheva & Valentin Morenov, 2022. "Effect of Temperature Conditions in Arctic Offshore Oil Fields on the Rheological Properties of Various Based Drilling Muds," Energies, MDPI, vol. 15(15), pages 1-10, August.
    2. Dmitriy Podoprigora & Roman Byazrov & Julia Sytnik, 2022. "The Comprehensive Overview of Large-Volume Surfactant Slugs Injection for Enhancing Oil Recovery: Status and the Outlook," Energies, MDPI, vol. 15(21), pages 1-21, November.
    3. Gulnur Zakirova & Evgeny Krapivsky & Anastasia Berezovskaya & Artem Borisov, 2023. "Storage of Compressed Natural Gases," Energies, MDPI, vol. 16(20), pages 1-15, October.
    4. Victor Duryagin & Thang Nguyen Van & Nikita Onegov & Galiya Shamsutdinova, 2022. "Investigation of the Selectivity of the Water Shutoff Technology," Energies, MDPI, vol. 16(1), pages 1-16, December.
    5. Inzir Raupov & Ramis Burkhanov & Azat Lutfullin & Alexander Maksyutin & Andrey Lebedev & Elena Safiullina, 2022. "Experience in the Application of Hydrocarbon Optical Studies in Oil Field Development," Energies, MDPI, vol. 15(10), pages 1-18, May.
    6. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    7. Ruslan Gizatullin & Mikhail Dvoynikov & Natalya Romanova & Victor Nikitin, 2023. "Drilling in Gas Hydrates: Managing Gas Appearance Risks," Energies, MDPI, vol. 16(5), pages 1-13, March.
    8. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    9. Tie Kuang & Jianqiao Liu & Zhilin Yin & Hongbin Jing & Yubo Lan & Zhengkai Lan & Huanquan Pan, 2023. "Fast and Robust Prediction of Multiphase Flow in Complex Fractured Reservoir Using a Fourier Neural Operator," Energies, MDPI, vol. 16(9), pages 1-18, April.
    10. Artem Shagiakhmetov & Svetlana Yushchenko, 2022. "Substantiation of In Situ Water Shut-Off Technology in Carbonate Oil Reservoirs," Energies, MDPI, vol. 15(14), pages 1-13, July.
    11. Kyaw Zay Ya & Boris Goryachev & Arkadiy Adigamov & Karina Nurgalieva & Igor Narozhnyy, 2022. "Thermodynamics and Electrochemistry of the Interaction of Sphalerite with Iron (II)-Bearing Compounds in Relation to Flotation," Resources, MDPI, vol. 11(12), pages 1-10, November.
    12. Dmitry Tananykhin & Maxim Grigorev & Maxim Korolev & Timur Solovyev & Nikolay Mikhailov & Mark Nesterov, 2022. "Experimental Evaluation of the Multiphase Flow Effect on Sand Production Process: Prepack Sand Retention Testing Results," Energies, MDPI, vol. 15(13), pages 1-17, June.
    13. Yuriy Zhukovskiy & Anastasia Koshenkova & Valeriya Vorobeva & Daniil Rasputin & Roman Pozdnyakov, 2023. "Assessment of the Impact of Technological Development and Scenario Forecasting of the Sustainable Development of the Fuel and Energy Complex," Energies, MDPI, vol. 16(7), pages 1-23, March.
    14. Dianju Wang & Zhandong Li & Haixiang Zhang & Shufen Liu & Fahao Yu & Ji Li & Xingbin Liu & Yingjian Xiao & Yunshu Lv, 2023. "Evaluation of the Performance of a Composite Water Control Process for Offshore Bottom Water Fractured Gas Reservoirs," Energies, MDPI, vol. 16(18), pages 1-11, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:515-:d:1023058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.