IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2275-d1081789.html
   My bibliography  Save this article

Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?

Author

Listed:
  • Bartłomiej Gawin

    (Department of Business Informatics, Faculty of Management, University of Gdańsk, 81-864 Sopot, Poland)

  • Robert Małkowski

    (Department of Power Electronics and Electrical Machines, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, 80-233 Gdańsk, Poland)

  • Robert Rink

    (Automatics and System Analysis Department, Gdańsk Division, Institute of Power Engineering Research Institute in Warsaw, 01-330 Warsaw, Poland)

Abstract

The estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related signals as an alternative to installing multiple electricity meters in the building. However, despite considerable progress, there are a limited number of tools dedicated to the problem of reliable and complete energy disaggregation. This paper presents an experiment consisting in designing an electrical system with electrical energy receivers, and then starting NILM disaggregation using machine learning algorithms (MLA). The quality of this disaggregation was assessed using dedicated indicators. Subsequently, the quality of these MLA was also verified using the available BLUED data source. The results show that the proposed method guarantees non-intrusive load disaggregation but still requires further research and testing. Measurement data have been published as open research data and listed in the literature section repository.

Suggested Citation

  • Bartłomiej Gawin & Robert Małkowski & Robert Rink, 2023. "Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?," Energies, MDPI, vol. 16(5), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2275-:d:1081789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abrar Mahi-al-rashid & Fahmid Hossain & Adnan Anwar & Sami Azam, 2022. "False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting," Energies, MDPI, vol. 15(13), pages 1-17, July.
    2. Bartlomiej Gawin & Bartosz Marcinkowski, 2020. "Setting up Energy Efficiency Management in Companies: Preliminary Lessons Learned from the Petroleum Industry," Energies, MDPI, vol. 13(21), pages 1-16, October.
    3. Amir Rafati & Hamid Reza Shaker & Saman Ghahghahzadeh, 2022. "Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review," Energies, MDPI, vol. 15(1), pages 1-16, January.
    4. Changho Shin & Seungeun Rho & Hyoseop Lee & Wonjong Rhee, 2019. "Data Requirements for Applying Machine Learning to Energy Disaggregation," Energies, MDPI, vol. 12(9), pages 1-19, May.
    5. Inoussa Laouali & Isaías Gomes & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili & Antonio Ruano, 2022. "Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks," Energies, MDPI, vol. 15(23), pages 1-29, November.
    6. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
    3. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    4. Antonio Rosato & Marco Savino Piscitelli & Alfonso Capozzoli, 2023. "Data-Driven Fault Detection and Diagnosis: Research and Applications for HVAC Systems in Buildings," Energies, MDPI, vol. 16(2), pages 1-6, January.
    5. Camilo Carrillo & Eloy Díaz Dorado & José Cidrás Pidre & Julio Garrido Campos & Diego San Facundo López & Luiz A. Lisboa Cardoso & Cristina I. Martínez Castañeda & José F. Sánchez Rúa, 2023. "Detailed Energy Analysis of a Sheet-Metal-Forming Press from Electrical Measurements," Energies, MDPI, vol. 16(19), pages 1-17, October.
    6. Hwan Kim & Sungsu Lim, 2021. "Temporal Patternization of Power Signatures for Appliance Classification in NILM," Energies, MDPI, vol. 14(10), pages 1-17, May.
    7. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    8. Netzah Calamaro & Moshe Donko & Doron Shmilovitz, 2021. "A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements," Energies, MDPI, vol. 14(21), pages 1-37, November.
    9. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    10. Brudermueller, Tobias & Kreft, Markus & Fleisch, Elgar & Staake, Thorsten, 2023. "Large-scale monitoring of residential heat pump cycling using smart meter data," Applied Energy, Elsevier, vol. 350(C).
    11. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    12. Nurkamilya Daurenbayeva & Almas Nurlanuly & Lyazzat Atymtayeva & Mateus Mendes, 2023. "Survey of Applications of Machine Learning for Fault Detection, Diagnosis and Prediction in Microclimate Control Systems," Energies, MDPI, vol. 16(8), pages 1-21, April.
    13. Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
    14. Hamidreza Alavi & Nuria Forcada, 2022. "User-Centric BIM-Based Framework for HVAC Root-Cause Detection," Energies, MDPI, vol. 15(10), pages 1-13, May.
    15. Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
    16. Patricia Franco & José M. Martínez & Young-Chon Kim & Mohamed A. Ahmed, 2022. "A Cyber-Physical Approach for Residential Energy Management: Current State and Future Directions," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    17. Fernando Sánchez Lasheras, 2021. "Predicting the Future-Big Data and Machine Learning," Energies, MDPI, vol. 14(23), pages 1-2, December.
    18. Calvo-Bascones, Pablo & Martín-Martínez, Francisco, 2024. "Indicators for suitability and feasibility assessment of flexible energy resources," Applied Energy, Elsevier, vol. 372(C).
    19. Muhammad Asif Ali Rehmani & Saad Aslam & Shafiqur Rahman Tito & Snjezana Soltic & Pieter Nieuwoudt & Neel Pandey & Mollah Daud Ahmed, 2021. "Power Profile and Thresholding Assisted Multi-Label NILM Classification," Energies, MDPI, vol. 14(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2275-:d:1081789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.