IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p854-d1032679.html
   My bibliography  Save this article

Data-Driven Fault Detection and Diagnosis: Research and Applications for HVAC Systems in Buildings

Author

Listed:
  • Antonio Rosato

    (Department of Architecture and Industrial Design, University of Campania Luigi Vanvitelli, Via San Lorenzo 4, 81031 Aversa, Italy)

  • Marco Savino Piscitelli

    (TEBE Research Group, BAEDA Lab, Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

  • Alfonso Capozzoli

    (TEBE Research Group, BAEDA Lab, Department of Energy, Politecnico di Torino, 10129 Torino, Italy)

Abstract

The main goal of Fault Detection and Diagnosis (FDD) processes is to identify faults, determine their sources, and recognize solutions before the system is further harmed or service is lost [...]

Suggested Citation

  • Antonio Rosato & Marco Savino Piscitelli & Alfonso Capozzoli, 2023. "Data-Driven Fault Detection and Diagnosis: Research and Applications for HVAC Systems in Buildings," Energies, MDPI, vol. 16(2), pages 1-6, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:854-:d:1032679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrad Bezyan & Radu Zmeureanu, 2022. "Detection and Diagnosis of Dependent Faults That Trigger False Symptoms of Heating and Mechanical Ventilation Systems Using Combined Machine Learning and Rule-Based Techniques," Energies, MDPI, vol. 15(5), pages 1-26, February.
    2. Guanjing Lin & Hannah Kramer & Valerie Nibler & Eliot Crowe & Jessica Granderson, 2022. "Building Analytics Tool Deployment at Scale: Benefits, Costs, and Deployment Practices," Energies, MDPI, vol. 15(13), pages 1-17, July.
    3. Yimin Chen & Guanjing Lin & Eliot Crowe & Jessica Granderson, 2021. "Development of a Unified Taxonomy for HVAC System Faults," Energies, MDPI, vol. 14(17), pages 1-25, September.
    4. Samuel Boahen & Kwang Ho Lee & Jong Min Choi, 2019. "Refrigerant Charge Fault Detection and Diagnosis Algorithm for Water-to-Water Heat Pump Unit," Energies, MDPI, vol. 12(3), pages 1-25, February.
    5. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    6. Guanjing Lin & Marco Pritoni & Yimin Chen & Jessica Granderson, 2020. "Development and Implementation of Fault-Correction Algorithms in Fault Detection and Diagnostics Tools," Energies, MDPI, vol. 13(10), pages 1-20, May.
    7. Max Emil S. Trothe & Hamid Reza Shaker & Muhyiddine Jradi & Krzysztof Arendt, 2019. "Fault Isolability Analysis and Optimal Sensor Placement for Fault Diagnosis in Smart Buildings," Energies, MDPI, vol. 12(9), pages 1-12, April.
    8. Amir Rafati & Hamid Reza Shaker & Saman Ghahghahzadeh, 2022. "Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review," Energies, MDPI, vol. 15(1), pages 1-16, January.
    9. Icksung Kim & Woohyun Kim, 2021. "Development and Validation of a Data-Driven Fault Detection and Diagnosis System for Chillers Using Machine Learning Algorithms," Energies, MDPI, vol. 14(7), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yang & Tianhao Shi & Tingzhen Ming & Yongjia Wu & Yanhua Chen & Zhongyi Yu & Mohammad Hossein Ahmadi, 2023. "Study of Internal Flow Heat Transfer Characteristics of Ejection-Permeable FADS," Energies, MDPI, vol. 16(11), pages 1-20, May.
    2. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    3. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    4. Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
    5. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    6. Bartłomiej Gawin & Robert Małkowski & Robert Rink, 2023. "Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?," Energies, MDPI, vol. 16(5), pages 1-26, February.
    7. Sondes Gharsellaoui & Majdi Mansouri & Shady S. Refaat & Haitham Abu-Rub & Hassani Messaoud, 2020. "Multivariate Features Extraction and Effective Decision Making Using Machine Learning Approaches," Energies, MDPI, vol. 13(3), pages 1-16, January.
    8. Kenneth R. Uren & George van Schoor & Martin van Eldik & Johannes J. A. de Bruin, 2020. "An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO 2 Heat Pump," Energies, MDPI, vol. 13(7), pages 1-34, April.
    9. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    10. Rosa Francesca De Masi & Antonio Gigante & Valentino Festa & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of HVAC’s Management on Indoor Thermo-Hygrometric Comfort and Energy Balance: In Situ Assessments on a Real nZEB," Energies, MDPI, vol. 14(21), pages 1-30, November.
    11. Brudermueller, Tobias & Kreft, Markus & Fleisch, Elgar & Staake, Thorsten, 2023. "Large-scale monitoring of residential heat pump cycling using smart meter data," Applied Energy, Elsevier, vol. 350(C).
    12. Samuel Boahen & Kwesi Mensah & Selorm Kwaku Anka & Kwang Ho Lee & Jong Min Choi, 2021. "Fault Detection Algorithm for Multiple-Simultaneous Refrigerant Charge and Secondary Fluid Flow Rate Faults in Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-19, June.
    13. Boahen, Samuel & Anka, Selorm Kwaku & Lee, Kwang Ho & Choi, Jong Min, 2021. "Performance analysis of cascade multi-functional heat pump in summer season," Renewable Energy, Elsevier, vol. 163(C), pages 1001-1011.
    14. Nurkamilya Daurenbayeva & Almas Nurlanuly & Lyazzat Atymtayeva & Mateus Mendes, 2023. "Survey of Applications of Machine Learning for Fault Detection, Diagnosis and Prediction in Microclimate Control Systems," Energies, MDPI, vol. 16(8), pages 1-21, April.
    15. Guanjing Lin & Armando Casillas & Maggie Sheng & Jessica Granderson, 2023. "Performance Evaluation of an Occupancy-Based HVAC Control System in an Office Building," Energies, MDPI, vol. 16(20), pages 1-21, October.
    16. Hamidreza Alavi & Nuria Forcada, 2022. "User-Centric BIM-Based Framework for HVAC Root-Cause Detection," Energies, MDPI, vol. 15(10), pages 1-13, May.
    17. Samuel Boahen & Kwesi Mensah & Yujin Nam & Jong Min Choi, 2020. "Fault Detection Methodology for Secondary Fluid Flow Rate in a Heat Pump Unit," Energies, MDPI, vol. 13(11), pages 1-17, June.
    18. Ruijun Guo & Guobin Zhang & Qian Zhang & Lei Zhou & Haicun Yu & Meng Lei & You Lv, 2021. "An Adaptive Early Fault Detection Model of Induced Draft Fans Based on Multivariate State Estimation Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:854-:d:1032679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.