IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924012170.html
   My bibliography  Save this article

Indicators for suitability and feasibility assessment of flexible energy resources

Author

Listed:
  • Calvo-Bascones, Pablo
  • Martín-Martínez, Francisco

Abstract

Recommender systems play a critical role in optimizing building energy consumption by providing personalized advice based on data analytics and user preferences. However, the literature highlights the need for systems that can justify their recommendations, as many of these systems use non-transparent machine-learning techniques. This research introduces two distinct types of indicators with three main goals: to identify patterns of flexible consumption behavior using transparent and straightforward methods suitable for remote decision support systems, thereby eliminating the need for extensive databases; to evaluate the feasibility of installing solar panels on building facades, rooftops, and structures using high-resolution 3D models; and to enhance understanding through a quantitative assessment of the feasibility and suitability of integrating renewable energy sources, particularly photovoltaic systems. Flexible prosumers are scored by assessing their energy consumption level, consistency, and variability through the Flexible Consumption Indicators. Topology Indicators perform a quantitative assessment of the feasibility of support surfaces for installing photovoltaic panels, taking into account rooftop pitch angles, orientations, and surrounding and internal structures, identifying those areas exposed to sufficient levels of irradiation. This study, which uses actual consumption profiles and similar households' buildings 3D models, demonstrates how the proposed indicators can aid identifying users with flexible consumption profiles that reside in buildings compatible with renewable energy sources, aiding in decision-making process within the energy transition.

Suggested Citation

  • Calvo-Bascones, Pablo & Martín-Martínez, Francisco, 2024. "Indicators for suitability and feasibility assessment of flexible energy resources," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924012170
    DOI: 10.1016/j.apenergy.2024.123834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dragos Machidon & Marcel Istrate, 2023. "Tilt Angle Adjustment for Incident Solar Energy Increase: A Case Study for Europe," Sustainability, MDPI, vol. 15(8), pages 1-12, April.
    2. Rusche, Simon & Weissflog., Jan & Wenninger, Simon & Häckel, Björn, 2023. "How flexible are energy flexibilities? Developing a flexibility score for revenue and risk analysis in industrial demand-side management," Applied Energy, Elsevier, vol. 345(C).
    3. Omar H AL-Zoubi & Hamza Al-Tahaineh & Rebhi A Damseh & A H AL-Zubi & S Odat & B Shbool, 2024. "Evaluating the real-world performance of vertically installed bifacial photovoltaic panels in residential settings: empirical findings and implications," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 386-442.
    4. Li, Rongling & Dane, Gamze & Finck, Christian & Zeiler, Wim, 2017. "Are building users prepared for energy flexible buildings?—A large-scale survey in the Netherlands," Applied Energy, Elsevier, vol. 203(C), pages 623-634.
    5. Yildirim, Deniz & Büyüksalih, Gürcan & Şahin, Ahmet Duran, 2021. "Rooftop photovoltaic potential in Istanbul: Calculations based on LiDAR data, measurements and verifications," Applied Energy, Elsevier, vol. 304(C).
    6. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    7. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
    8. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingtao Li & Zhixin Li & Yao Wang & Hong Zhang, 2023. "Energy Utilization and Carbon Reduction Potential of Solar Energy in Residential Blocks: A Case Study on a Tropical High-Density City in China," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    2. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    3. Li, Guanglei & Wang, Guohao & Luo, Tengqi & Hu, Yuxiao & Wu, Shouyuan & Gong, Guanghui & Song, Chenchen & Guo, Zhiling & Liu, Zhengguang, 2024. "SolarSAM: Building-scale photovoltaic potential assessment based on Segment Anything Model (SAM) and remote sensing for emerging city," Renewable Energy, Elsevier, vol. 237(PA).
    4. Sarran, Lucile & Gunay, H. Burak & O'Brien, William & Hviid, Christian A. & Rode, Carsten, 2021. "A data-driven study of thermostat overrides during demand response events," Energy Policy, Elsevier, vol. 153(C).
    5. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    6. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Cardoso, Andressa & Jurado-Rodríguez, David & López, Alfonso & Ramos, M. Isabel & Jurado, Juan Manuel, 2024. "Automated detection and tracking of photovoltaic modules from 3D remote sensing data," Applied Energy, Elsevier, vol. 367(C).
    8. Ayu Washizu & Satoshi Nakano & Hideo Ishii & Yasuhiro Hayashi, 2019. "Willingness to Pay for Home Energy Management Systems: A Survey in New York and Tokyo," Sustainability, MDPI, vol. 11(17), pages 1-20, September.
    9. Cheng, Ziwei & Yao, Zhen, 2024. "A novel approach to predict buildings load based on deep learning and non-intrusive load monitoring technique, toward smart building," Energy, Elsevier, vol. 312(C).
    10. Bartłomiej Gawin & Robert Małkowski & Robert Rink, 2023. "Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?," Energies, MDPI, vol. 16(5), pages 1-26, February.
    11. Camilo Carrillo & Eloy Díaz Dorado & José Cidrás Pidre & Julio Garrido Campos & Diego San Facundo López & Luiz A. Lisboa Cardoso & Cristina I. Martínez Castañeda & José F. Sánchez Rúa, 2023. "Detailed Energy Analysis of a Sheet-Metal-Forming Press from Electrical Measurements," Energies, MDPI, vol. 16(19), pages 1-17, October.
    12. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    13. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Sebastiano Anselmo & Maria Ferrara, 2023. "Trends and Evolution of the GIS-Based Photovoltaic Potential Calculation," Energies, MDPI, vol. 16(23), pages 1-27, November.
    15. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
    16. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    17. Anwar Ul Haq & Hans-Arno Jacobsen, 2018. "Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors: A Technical Review," Energies, MDPI, vol. 11(1), pages 1-22, January.
    18. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    19. Lyu, Chenghao & Wang, Weiquan & Wang, Junyue & Bai, Yilin & Song, Zhengxiang & Wang, Wei & Meng, Jinhao, 2024. "The role of co-optimization in trading off cost and frequency regulation service for industrial microgrids," Applied Energy, Elsevier, vol. 375(C).
    20. Hwan Kim & Sungsu Lim, 2021. "Temporal Patternization of Power Signatures for Appliance Classification in NILM," Energies, MDPI, vol. 14(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924012170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.