Temporal Patternization of Power Signatures for Appliance Classification in NILM
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jin-Gyeom Kim & Bowon Lee, 2019. "Appliance Classification by Power Signal Analysis Based on Multi-Feature Combination Multi-Layer LSTM," Energies, MDPI, vol. 12(14), pages 1-24, July.
- Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
- Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
- Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amitay Kligman & Arbel Yaniv & Yuval Beck, 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers," Energies, MDPI, vol. 16(7), pages 1-21, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
- Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
- Dai, Shuang & Meng, Fanlin & Wang, Qian & Chen, Xizhong, 2024. "DP2-NILM: A distributed and privacy-preserving framework for non-intrusive load monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Amitay Kligman & Arbel Yaniv & Yuval Beck, 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers," Energies, MDPI, vol. 16(7), pages 1-21, March.
- Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
- Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
- Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
- Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
- Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
- Ce Peng & Guoying Lin & Shaopeng Zhai & Yi Ding & Guangyu He, 2020. "Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model," Energies, MDPI, vol. 13(21), pages 1-19, October.
- Gangjun Gong & Xiaonan An & Nawaraj Kumar Mahato & Shuyan Sun & Si Chen & Yafeng Wen, 2019. "Research on Short-Term Load Prediction Based on Seq2seq Model," Energies, MDPI, vol. 12(16), pages 1-18, August.
- Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
- Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
- Yini Ni & Yanghong Xia & Zichen Li & Qifan Feng, 2023. "A Non-Intrusive Identification Approach for Residential Photovoltaic Systems Using Transient Features and TCN with Attention Mechanisms," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
- Bartłomiej Gawin & Robert Małkowski & Robert Rink, 2023. "Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?," Energies, MDPI, vol. 16(5), pages 1-26, February.
- Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
- Jiang, Zhanhong & Liu, Chao & Akintayo, Adedotun & Henze, Gregor P. & Sarkar, Soumik, 2017. "Energy prediction using spatiotemporal pattern networks," Applied Energy, Elsevier, vol. 206(C), pages 1022-1039.
- Anthony Faustine & Lucas Pereira, 2020. "Improved Appliance Classification in Non-Intrusive Load Monitoring Using Weighted Recurrence Graph and Convolutional Neural Networks," Energies, MDPI, vol. 13(13), pages 1-15, July.
- Camilo Carrillo & Eloy Díaz Dorado & José Cidrás Pidre & Julio Garrido Campos & Diego San Facundo López & Luiz A. Lisboa Cardoso & Cristina I. Martínez Castañeda & José F. Sánchez Rúa, 2023. "Detailed Energy Analysis of a Sheet-Metal-Forming Press from Electrical Measurements," Energies, MDPI, vol. 16(19), pages 1-17, October.
More about this item
Keywords
non-intrusive load monitoring (NILM); load identification; convolutional neural network (CNN); deep learning; temporal bar graph; temporal patternization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2931-:d:557516. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.