IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4877-d854618.html
   My bibliography  Save this article

False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting

Author

Listed:
  • Abrar Mahi-al-rashid

    (Department of Mechanical and Production Engineering, Islamic University of Technology, K B Bazar Rd., Gazipur 1704, Bangladesh)

  • Fahmid Hossain

    (Department of Mechanical and Production Engineering, Islamic University of Technology, K B Bazar Rd., Gazipur 1704, Bangladesh)

  • Adnan Anwar

    (School of IT, Deakin University, 75 Pigdons Rd., Waurn Ponds, Geelong 3216, Australia)

  • Sami Azam

    (College of Engineering, IT and Environment, Charles Darwin University, Casuarina 0810, Australia)

Abstract

Supervisory Control and Data Acquisition (SCADA) systems are essential for reliable communication and control of smart grids. However, in the cyber-physical realm, it becomes highly vulnerable to cyber-attacks like False Data Injection (FDI) into the measurement signal which can circumvent the conventional detection methods and interfere with the normal operation of grids, which in turn could potentially lead to huge financial losses and can have a large impact on public safety. It is imperative to have an accurate state estimation of power consumption for further operational decision-making.This work presents novel forecasting-aided anomaly detection using an CNN-LSTM based auto-encoder sequence to sequence architecture to combat against false data injection attacks. We further present an adaptive optimal threshold based on the consumption patterns to identify abnormal behaviour. Evaluation is performed on real-time energy demand consumption data collected from the Australian Energy Market Operator. An extensive experiment shows that the proposed model outperforms other benchmark algorithms in not only improving the data injection attack (95.43%) but also significantly reducing the false positive rate.

Suggested Citation

  • Abrar Mahi-al-rashid & Fahmid Hossain & Adnan Anwar & Sami Azam, 2022. "False Data Injection Attack Detection in Smart Grid Using Energy Consumption Forecasting," Energies, MDPI, vol. 15(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4877-:d:854618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Adil & Khalid, Muhammad, 2018. "An intelligent framework for short-term multi-step wind speed forecasting based on Functional Networks," Applied Energy, Elsevier, vol. 225(C), pages 902-911.
    2. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    3. Giovanna Dondossola & Judit Szanto & Marcelo Masera & Igor Nai Fovino, 2008. "Effects of intentional threats to power substation control systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 129-143.
    4. Han, Li & Romero, Carlos E. & Yao, Zheng, 2015. "Wind power forecasting based on principle component phase space reconstruction," Renewable Energy, Elsevier, vol. 81(C), pages 737-744.
    5. Mohamad El Hariri & Eric Harmon & Tarek Youssef & Mahmoud Saleh & Hany Habib & Osama Mohammed, 2019. "The IEC 61850 Sampled Measured Values Protocol: Analysis, Threat Identification, and Feasibility of Using NN Forecasters to Detect Spoofed Packets," Energies, MDPI, vol. 12(19), pages 1-24, September.
    6. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    7. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Bartłomiej Gawin & Robert Małkowski & Robert Rink, 2023. "Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?," Energies, MDPI, vol. 16(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    5. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    6. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    7. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    8. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    9. Tarazi, Hussam & Sutton, Sara & Olinjyk, John & Bond, Benjamin & Rrushi, Julian, 2024. "A watchdog model for physics-based anomaly detection in digital substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    10. Curry, Bruce, 2007. "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, Elsevier, vol. 179(1), pages 267-274, May.
    11. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    12. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    13. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    14. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    15. Ahmed Gowida & Salaheldin Elkatatny & Saad Al-Afnan & Abdulazeez Abdulraheem, 2020. "New Computational Artificial Intelligence Models for Generating Synthetic Formation Bulk Density Logs While Drilling," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    18. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    19. Zhang, Rong & Ashuri, Baabak & Shyr, Yu & Deng, Yong, 2018. "Forecasting Construction Cost Index based on visibility graph: A network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 239-252.
    20. Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4877-:d:854618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.