Operation and Thermodynamic Modeling of a Novel Advanced Hydrothermal Reactor: Introduction of the Novel 3-Step Evolution Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
- Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
- Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
- Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
- Wen-Tien Tsai, 2012. "An Analysis of the Use of Biosludge as an Energy Source and Its Environmental Benefits in Taiwan," Energies, MDPI, vol. 5(8), pages 1-10, August.
- Maria A. Vasileiadou & Georgia Altiparmaki & Konstantinos Moustakas & Stergios Vakalis, 2022. "Quality of Hydrochar from Wine Sludge under Variable Conditions of Hydrothermal Carbonization: The Case of Lesvos Island," Energies, MDPI, vol. 15(10), pages 1-12, May.
- Silvia Román & Judy Libra & Nicole Berge & Eduardo Sabio & Kyoung Ro & Liang Li & Beatriz Ledesma & Andrés Álvarez & Sunyoung Bae, 2018. "Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review," Energies, MDPI, vol. 11(1), pages 1-28, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
- M. Toufiq Reza, 2022. "Hydrothermal Carbonization," Energies, MDPI, vol. 15(15), pages 1-3, July.
- Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
- Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
- Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
- Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Leonel J. R. Nunes & Abel M. Rodrigues & João C. O. Matias & Ana I. Ferraz & Ana C. Rodrigues, 2021. "Production of Biochar from Vine Pruning: Waste Recovery in the Wine Industry," Agriculture, MDPI, vol. 11(6), pages 1-15, May.
- Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
- Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
- Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
- Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Kyoung S. Ro & Judy A. Libra & Andrés Alvarez-Murillo, 2020. "Comparative Studies on Water- and Vapor-Based Hydrothermal Carbonization: Process Analysis," Energies, MDPI, vol. 13(21), pages 1-18, November.
- Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Maarten Messagie & Fayçal Boureima & Jan Mertens & Javier Sanfelix & Cathy Macharis & Joeri Van Mierlo, 2013. "The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas," Energies, MDPI, vol. 6(3), pages 1-16, March.
- Gallifuoco, Alberto & Taglieri, Luca & Papa, Alessandro Antonio, 2020. "Hydrothermal carbonization of waste biomass to fuel: A novel technique for analyzing experimental data," Renewable Energy, Elsevier, vol. 149(C), pages 1254-1260.
- Alonso Albalate-Ramírez & Alejandro Padilla-Rivera & Juan Felipe Rueda-Avellaneda & Brenda Nelly López-Hernández & Luis Ramiro Miramontes-Martínez & Alejandro Estrada-Baltazar & Pasiano Rivas-García, 2024. "Mapping the Sustainability of Waste-to-Energy Processes for Food Loss and Waste in Mexico—Part 2: Environmental and Economic Analysis," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
- Gregor Sailer & Julian Comi & Florian Empl & Martin Silberhorn & Valeska Heymann & Monika Bosilj & Siham Ouardi & Stefan Pelz & Joachim Müller, 2022. "Hydrothermal Treatment of Residual Forest Wood (Softwood) and Digestate from Anaerobic Digestion—Influence of Temperature and Holding Time on the Characteristics of the Solid and Liquid Products," Energies, MDPI, vol. 15(10), pages 1-26, May.
- Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
- Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
More about this item
Keywords
hydrothermal carbonization; hydrochar; thermodynamic modeling; biowaste; mass balances;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2032-:d:1072933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.