IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1637-d1059998.html
   My bibliography  Save this article

FDD in Building Systems Based on Generalized Machine Learning Approaches

Author

Listed:
  • William Nelson

    (Department of Mechanical Engineering, Energy Systems Laboratory, Texas AM University, College Station, TX 77843, USA)

  • Charles Culp

    (Department of Architecture, Energy Systems Laboratory, Texas AM University, College Station, TX 77843, USA)

Abstract

Automated fault detection and diagnostics in building systems using machine learning (ML) can be applied to commercial buildings and can result in increased efficiency and savings. Using ML for FDD brings the benefit of advancing the analytics of a building. An automated process was developed to provide ML-based building analytics to building engineers and operators with minimal training. The process can be applied to buildings with a variety of configurations, which saves time and manual effort in a fault analysis. Classification analysis is used for fault detection and diagnostics. An ML analysis is defined which introduces advanced diagnostics with metrics to quantify a fault’s impact in the system and rank detected faults in order of impact severity. Explanations of the methodology used for the ML analysis include a description of the algorithms used. The analysis was applied to a building on the Texas A&M University campus where the results are shown to illustrate the performance of the process using measured data from a building.

Suggested Citation

  • William Nelson & Charles Culp, 2023. "FDD in Building Systems Based on Generalized Machine Learning Approaches," Energies, MDPI, vol. 16(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1637-:d:1059998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Won-Yong & House, John M. & Kyong, Nam-Ho, 2004. "Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks," Applied Energy, Elsevier, vol. 77(2), pages 153-170, February.
    2. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Nelson & Christopher Dieckert, 2024. "Machine Learning-Based Automated Fault Detection and Diagnostics in Building Systems," Energies, MDPI, vol. 17(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gertsvolf, David & Horvat, Miljana & Aslam, Danesh & Khademi, April & Berardi, Umberto, 2024. "A U-net convolutional neural network deep learning model application for identification of energy loss in infrared thermographic images," Applied Energy, Elsevier, vol. 360(C).
    2. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Ren, Haoshan & Xu, Chengliang & Lyu, Yuanli & Ma, Zhenjun & Sun, Yongjun, 2023. "A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems," Applied Energy, Elsevier, vol. 351(C).
    4. William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    5. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    6. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    8. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
    9. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    11. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    12. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
    13. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    14. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    16. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    17. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    18. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    20. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1637-:d:1059998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.