IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6607-d655532.html
   My bibliography  Save this article

Fault Diagnosis of DCV and Heating Systems Based on Causal Relation in Fuzzy Bayesian Belief Networks Using Relation Direction Probabilities

Author

Listed:
  • Ali Behravan

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

  • Bahareh Kiamanesh

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

  • Roman Obermaisser

    (Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany)

Abstract

The state-of-the-art provides data-driven and knowledge-driven diagnostic methods. Each category has its strengths and shortcomings. The knowledge-driven methods rely mainly on expert knowledge and resemble the diagnostic thinking of domain experts with a high capacity in the reasoning of uncertainties, diagnostics of different fault severities, and understandability. However, these methods involve higher and more time-consuming effort; they require a deep understanding of the causal relationships between faults and symptoms; and there is still a lack of automatic approaches to improving the efficiency. The data-driven methods rely on similarities and patterns, and they are very sensitive to changes of patterns and have more accuracy than the knowledge-driven methods, but they require massive data for training, cannot inform about the reason behind the result, and represent black boxes with low understandability. The research problem is thus the combination of knowledge-driven and data-driven diagnosis in DCV and heating systems, to benefit from both categories. The diagnostic method presented in this paper involves less effort for experts without requiring deep understanding of the causal relationships between faults and symptoms compared to existing knowledge-driven methods, while offering high understandability and high accuracy. The fault diagnosis uses a data-driven classifier in combination with knowledge-driven inference with both fuzzy logic and a Bayesian Belief Network (BBN). In offline mode, for each fault class, a Relation-Direction Probability (RDP) table is computed and stored in a fault library. In online mode, we determine the similarities between the actual RDP and the offline precomputed RDPs. The combination of BBN and fuzzy logic in our introduced method analyzes the dependencies of the signals using Mutual Information (MI) theory. The results show the performance of the combined classifier is comparable to the data-driven method while maintaining the strengths of the knowledge-driven methods.

Suggested Citation

  • Ali Behravan & Bahareh Kiamanesh & Roman Obermaisser, 2021. "Fault Diagnosis of DCV and Heating Systems Based on Causal Relation in Fuzzy Bayesian Belief Networks Using Relation Direction Probabilities," Energies, MDPI, vol. 14(20), pages 1-47, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6607-:d:655532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guoping Zeng, 2015. "A Unified Definition of Mutual Information with Applications in Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, March.
    2. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    3. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wenli & Liu, Fenghua & Fang, Weili & Love, Peter E.D., 2024. "Causal discovery and reasoning for geotechnical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Bahareh Kiamanesh & Ali Behravan & Roman Obermaisser, 2022. "Realistic Simulation of Sensor/Actuator Faults for a Dependability Evaluation of Demand-Controlled Ventilation and Heating Systems," Energies, MDPI, vol. 15(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bode, Gerrit & Thul, Simon & Baranski, Marc & Müller, Dirk, 2020. "Real-world application of machine-learning-based fault detection trained with experimental data," Energy, Elsevier, vol. 198(C).
    2. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    3. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    5. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
    6. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    8. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    9. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    10. Garshasbi, Mohammad Sadeq, 2016. "Fault localization based on combines active and passive measurements in computer networks by ant colony optimization," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 205-212.
    11. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    12. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    13. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    14. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Benjamin-Fink, Nicole & Reilly, Brian K., 2017. "A road map for developing and applying object-oriented bayesian networks to “WICKED” problems," Ecological Modelling, Elsevier, vol. 360(C), pages 27-44.
    16. Gertsvolf, David & Horvat, Miljana & Aslam, Danesh & Khademi, April & Berardi, Umberto, 2024. "A U-net convolutional neural network deep learning model application for identification of energy loss in infrared thermographic images," Applied Energy, Elsevier, vol. 360(C).
    17. Chunwang Xiaogeng LiRen & Xiaojun Ma & Fuxiang Chen & Zhicheng Yang & Sandeep Panchal, 2022. "Simulation and inspection of fault arc in building energy-saving distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 331-339, March.
    18. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    19. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    20. Luo, Zheng & Lin, Xiaojie & Qiu, Tianyue & Li, Manjie & Zhong, Wei & Zhu, Lingkai & Liu, Shuangcui, 2024. "Investigation of hybrid adversarial-diffusion sample generation method of substations in district heating system," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6607-:d:655532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.