Applicability and Trend of the Artificial Intelligence (AI) on Bioenergy Research between 1991–2021: A Bibliometric Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
- Elizabeth Gibney, 2015. "Game-playing software holds lessons for neuroscience," Nature, Nature, vol. 518(7540), pages 465-466, February.
- Miyamoto, Mai & Takeuchi, Kenji, 2019.
"Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies,"
Energy Policy, Elsevier, vol. 129(C), pages 1331-1338.
- Mai Miyamoto & Kenji Takeuchi, 2018. "Climate Agreement and Technology Diffusion: Impact of the Kyoto Protocol on International Patent Applications for Renewable Energy Technologies," Discussion Papers 1820, Graduate School of Economics, Kobe University.
- Withey, Patrick & Johnston, Craig & Guo, Jinggang, 2019. "Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
- De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
- Agnieszka Baer-Nawrocka & Arkadiusz Sadowski, 2019. "Food security and food self-sufficiency around the world: A typology of countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
- Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Giovanni Ferrari & Andrea Pezzuolo & Abdul-Sattar Nizami & Francesco Marinello, 2020. "Bibliometric Analysis of Trends in Biomass for Bioenergy Research," Energies, MDPI, vol. 13(14), pages 1-21, July.
- Maamoun, Nada, 2019. "The Kyoto protocol: Empirical evidence of a hidden success," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 227-256.
- Tokimatsu, Koji & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Global zero emissions scenarios: The role of biomass energy with carbon capture and storage by forested land use," Applied Energy, Elsevier, vol. 185(P2), pages 1899-1906.
- Saeed Solaymani, 2021. "A Review on Energy and Renewable Energy Policies in Iran," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
- Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
- David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
- Lakshmy Naidu & Ravichandran Moorthy, 2021. "A Review of Key Sustainability Issues in Malaysian Palm Oil Industry," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Jun Li & Wei Zhu & Jun Wang & Wenfei Li & Sheng Gong & Jian Zhang & Wei Wang, 2018. "RNA3DCNN: Local and global quality assessments of RNA 3D structures using 3D deep convolutional neural networks," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-18, November.
- Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
- Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
- Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
- Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
- Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
- Pujin Wang & Jianzhuang Xiao & Ken’ichi Kawaguchi & Lichen Wang, 2022. "Automatic Ceiling Damage Detection in Large-Span Structures Based on Computer Vision and Deep Learning," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
- Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
- Wenwen Wang & Linzhao Xue & Ming Zhang, 2023. "Research on environmental regulation behavior among local government, enterprises, and consumers from the perspective of dynamic cost of enterprises," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 917-937, January.
- Khadija Sarquah & Satyanarayana Narra & Gesa Beck & Edward A. Awafo & Edward Antwi, 2022. "Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
- Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
- Yuchao Dong, 2022. "Randomized Optimal Stopping Problem in Continuous time and Reinforcement Learning Algorithm," Papers 2208.02409, arXiv.org, revised Sep 2023.
- Shijun Wang & Baocheng Zhu & Chen Li & Mingzhe Wu & James Zhang & Wei Chu & Yuan Qi, 2020. "Riemannian Proximal Policy Optimization," Computer and Information Science, Canadian Center of Science and Education, vol. 13(3), pages 1-93, August.
- Zhenchong Mo & Lin Gong & Mingren Zhu & Junde Lan, 2024. "The Generative Generic-Field Design Method Based on Design Cognition and Knowledge Reasoning," Sustainability, MDPI, vol. 16(22), pages 1-34, November.
- Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
More about this item
Keywords
artificial intelligence; bioenergy; bibliometric analysis; ANN; web of science;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1235-:d:1044889. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.