IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1113-d1041128.html
   My bibliography  Save this article

Emerging Cybersecurity and Privacy Threats to Electric Vehicles and Their Impact on Human and Environmental Sustainability

Author

Listed:
  • Zia Muhammad

    (Department of Computer Science, Sheila and Robert Challey Institute for Global Innovation and Growth, North Dakota State University (NDSU), Fargo, ND 58108, USA)

  • Zahid Anwar

    (Department of Computer Science, Sheila and Robert Challey Institute for Global Innovation and Growth, North Dakota State University (NDSU), Fargo, ND 58108, USA)

  • Bilal Saleem

    (Department of Cybersecurity, Air University, Islamabad 44000, Pakistan)

  • Jahanzeb Shahid

    (Department of Information Security, National University of Sciences and Technology, Islamabad 44000, Pakistan)

Abstract

With the global energy crisis, increasing demand, and a national-level emphasis on electric vehicles (EVs), numerous innovations are being witnessed throughout the EV industry. EVs are equipped with sensors that maintain a sustainable environment for the betterment of society and enhance human sustainability. However, at the same time, as is the case for any new digital technology, they are susceptible to threats to security and privacy. Recent incidents demonstrate that these sensors have been misused for car and energy theft, financial fraud, data compromise, and have caused severe health and safety problems, amongst other things. To the best of our knowledge, this paper provides a first systematic analysis of EV sustainability, digital technologies that enhance sustainability, their potential cybersecurity threats, and corresponding defense. Firstly, three robust taxonomies have been presented to identify the dangers that can affect long-term sustainability domains, including (1) life and well-being, (2) safe environment, and (3) innovation and development. Second, this research measures the impact of cybersecurity threats on EVs and correspondingly to their sustainability goals. Third, it details the extent to which specific security controls can mitigate these threats, thereby allowing for a smooth transition toward secure and sustainable future smart cities.

Suggested Citation

  • Zia Muhammad & Zahid Anwar & Bilal Saleem & Jahanzeb Shahid, 2023. "Emerging Cybersecurity and Privacy Threats to Electric Vehicles and Their Impact on Human and Environmental Sustainability," Energies, MDPI, vol. 16(3), pages 1-30, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1113-:d:1041128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucian Mihet-Popa & Sergio Saponara, 2018. "Toward Green Vehicles Digitalization for the Next Generation of Connected and Electrified Transport Systems," Energies, MDPI, vol. 11(11), pages 1-24, November.
    2. Asad Waqar Malik & Zahid Anwar, 2022. "Do Charging Stations Benefit from Cryptojacking? A Novel Framework for Its Financial Impact Analysis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. André Kummerow & Kevin Schäfer & Parul Gupta & Steffen Nicolai & Peter Bretschneider, 2022. "Combined Network Intrusion and Phasor Data Anomaly Detection for Secure Dynamic Control Centers," Energies, MDPI, vol. 15(9), pages 1-16, May.
    4. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    5. Jay Johnson & Timothy Berg & Benjamin Anderson & Brian Wright, 2022. "Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses," Energies, MDPI, vol. 15(11), pages 1-26, May.
    6. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    7. Gschwendtner, Christine & Sinsel, Simon R. & Stephan, Annegret, 2021. "Vehicle-to-X (V2X) implementation: An overview of predominate trial configurations and technical, social and regulatory challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Mohammed Alghassab, 2021. "Analyzing the Impact of Cybersecurity on Monitoring and Control Systems in the Energy Sector," Energies, MDPI, vol. 15(1), pages 1-21, December.
    9. Efstratios Chatzoglou & Georgios Kambourakis & Vasileios Kouliaridis, 2021. "A Multi-Tier Security Analysis of Official Car Management Apps for Android," Future Internet, MDPI, vol. 13(3), pages 1-35, February.
    10. Emiliano Pipitone & Salvatore Caltabellotta & Leonardo Occhipinti, 2021. "A Life Cycle Environmental Impact Comparison between Traditional, Hybrid, and Electric Vehicles in the European Context," Sustainability, MDPI, vol. 13(19), pages 1-32, October.
    11. Noori, Mehdi & Tatari, Omer, 2016. "Development of an agent-based model for regional market penetration projections of electric vehicles in the United States," Energy, Elsevier, vol. 96(C), pages 215-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    2. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    5. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    6. Wolbertus, Rick & van den Hoed, Robert & Kroesen, Maarten & Chorus, Caspar, 2021. "Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 262-285.
    7. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Hou, Yunhe, 2024. "Cyber resilience of power electronics-enabled power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Alexis S. Pascaris & Joshua M. Pearce, 2020. "U.S. Greenhouse Gas Emission Bottlenecks: Prioritization of Targets for Climate Liability," Energies, MDPI, vol. 13(15), pages 1-28, August.
    9. Park, Sung-Won & Son, Sung-Yong, 2023. "Techno-economic analysis for the electric vehicle battery aging management of charge point operator," Energy, Elsevier, vol. 280(C).
    10. Rishabh Ghotge & Koen Philippe Nijssen & Jan Anne Annema & Zofia Lukszo, 2022. "Use before You Choose: What Do EV Drivers Think about V2G after Experiencing It?," Energies, MDPI, vol. 15(13), pages 1-22, July.
    11. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    12. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    13. Abubakr, Hussein & Lashab, Abderezak & Vasquez, Juan C. & Mohamed, Tarek Hassan & Guerrero, Josep M., 2023. "Novel V2G regulation scheme using Dual-PSS for PV islanded microgrid," Applied Energy, Elsevier, vol. 340(C).
    14. Samantha Heiberg & Emily Emond & Cody Allen & Dheeraj Raya & Venkataramana Gadhamshetty & Saurabh Sudha Dhiman & Achyuth Ravilla & Ilke Celik, 2023. "Environmental Impact Assessment of Autonomous Transportation Systems," Energies, MDPI, vol. 16(13), pages 1-13, June.
    15. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    16. Qingyou Yan & Meijuan Zhang & Wei Li & Guangyu Qin, 2020. "Risk Assessment of New Energy Vehicle Supply Chain Based on Variable Weight Theory and Cloud Model: A Case Study in China," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    17. Cezar-Petre Simion & Cătălin-Alexandru Verdeș & Alexandra-Andreea Mironescu & Florin-Gabriel Anghel, 2023. "Digitalization in Energy Production, Distribution, and Consumption: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    18. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.
    19. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    20. Radpour, Saeidreza & Hossain Mondal, Md Alam & Kumar, Amit, 2017. "Market penetration modeling of high energy efficiency appliances in the residential sector," Energy, Elsevier, vol. 134(C), pages 951-961.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1113-:d:1041128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.