IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223012069.html
   My bibliography  Save this article

A concept to maximise energy self-sufficiency of the housing stock in central Europe based on renewable resources and efficiency improvement

Author

Listed:
  • Fedorczak-Cisak, Małgorzata
  • Radziszewska-Zielina, Elżbieta
  • Nowak-Ocłoń, Marzena
  • Biskupski, Jacek
  • Jastrzębski, Paweł
  • Kotowicz, Anna
  • Varbanov, Petar Sabev
  • Klemeš, Jiří Jaromír

Abstract

In this article, an innovative method for designing energy-self-sufficient housing communities is presented, emphasising proactive user participation. The overall concept for achieving such communities is first described, and then the current research is presented – focusing on the electricity generation and storage within the community. Three key degrees of freedom are exploited: buildings with very low and coordinated energy demand; strong residents participation; a large share of local energy generation with its storage in the houses. The starting point is to maximise the energy efficiency of individual buildings. As the buildings in the analysed community were built according to the obtained optimisation results and are inhabited by users, the authors assessed the actual energy consumption in relation to the design value in Design Builder software. The detected discrepancy was only 3.8%. That modelling accuracy allows further steps to achieve a fully energy-self-sufficient community. This is illustrated using a real example of a 40-building nZEB community in Poland, independent of the energy supply from the grid. The presented approach demonstrates a Smart City solution for a community of single-family houses with confirmed very low final energy demand and potential Greenhouse Gas reduction of up to 96%.

Suggested Citation

  • Fedorczak-Cisak, Małgorzata & Radziszewska-Zielina, Elżbieta & Nowak-Ocłoń, Marzena & Biskupski, Jacek & Jastrzębski, Paweł & Kotowicz, Anna & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "A concept to maximise energy self-sufficiency of the housing stock in central Europe based on renewable resources and efficiency improvement," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012069
    DOI: 10.1016/j.energy.2023.127812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2020. "Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated Smart Buildings," Applied Energy, Elsevier, vol. 259(C).
    2. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    3. Małgorzata Fedorczak-Cisak & Anna Kotowicz & Elżbieta Radziszewska-Zielina & Bartłomiej Sroka & Tadeusz Tatara & Krzysztof Barnaś, 2020. "Multi-Criteria Optimisation of an Experimental Complex of Single-Family Nearly Zero-Energy Buildings," Energies, MDPI, vol. 13(7), pages 1-30, March.
    4. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Piyapath Siratarnsophon & Vinicius C. Cunha & Nicholas G. Barry & Surya Santoso, 2021. "Interphase Power Flow Control via Single-Phase Elements in Distribution Systems," Clean Technol., MDPI, vol. 3(1), pages 1-22, January.
    6. Paweł Kelm & Rozmysław Mieński & Irena Wasiak & Katarzyna Wojciechowska, 2020. "Examination of EV Abilities to Provide Vehicle-to-Home Service in Low Voltage Installation," Energies, MDPI, vol. 13(7), pages 1-14, April.
    7. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    8. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    9. Zbigniew J. Makieła & Magdalena M. Stuss & Karolina Mucha-Kuś & Grzegorz Kinelski & Marcin Budziński & Janusz Michałek, 2022. "Smart City 4.0: Sustainable Urban Development in the Metropolis GZM," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    10. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    11. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    12. Minuto, Francesco Demetrio & Lanzini, Andrea, 2022. "Energy-sharing mechanisms for energy community members under different asset ownership schemes and user demand profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Korjani, Saman & Casu, Fabio & Damiano, Alfonso & Pilloni, Virginia & Serpi, Alessandro, 2022. "An online energy management tool for sizing integrated PV-BESS systems for residential prosumers," Applied Energy, Elsevier, vol. 313(C).
    15. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Tonello, Andrea M. & Qadrdan, Meysam & Wu, Jianzhong, 2022. "Data-driven prosumer-centric energy scheduling using convolutional neural networks," Applied Energy, Elsevier, vol. 308(C).
    16. Higashitani, Takuya & Ikegami, Takashi & Uemichi, Akane & Akisawa, Atsushi, 2021. "Evaluation of residential power supply by photovoltaics and electric vehicles," Renewable Energy, Elsevier, vol. 178(C), pages 745-756.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenli Dong & Lihan Lin, 2023. "Evaluating the Whole-Process Management of Future Communities Based on Integrated Fuzzy Decision Methods," Sustainability, MDPI, vol. 15(23), pages 1-23, November.
    2. Laimon, M. & Yusaf, T., 2024. "Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system," Renewable Energy, Elsevier, vol. 222(C).
    3. Hussain, Sadam & Azim, M. Imran & Lai, Chunyan & Eicker, Ursula, 2023. "New coordination framework for smart home peer-to-peer trading to reduce impact on distribution transformer," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    2. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    4. Varga, Szabolcs & Oliveira, Armando C. & Palmero-Marrero, Anna & Vrba, Jakub, 2017. "Preliminary experimental results with a solar driven ejector air conditioner in Portugal," Renewable Energy, Elsevier, vol. 109(C), pages 83-92.
    5. Grzegorz Kinelski & Jakub Stęchły & Piotr Bartkowiak, 2022. "Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas," Energies, MDPI, vol. 15(9), pages 1-23, April.
    6. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    8. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    9. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    10. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    11. Corneliu Marinescu, 2021. "Design Consideration Regarding a Residential Renewable-Based Microgrid with EV Charging Station Capabilities," Energies, MDPI, vol. 14(16), pages 1-13, August.
    12. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    13. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    14. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    15. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    16. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    18. Ginevra Balletto & Mara Ladu & Federico Camerin & Emilio Ghiani & Jacopo Torriti, 2022. "More Circular City in the Energy and Ecological Transition: A Methodological Approach to Sustainable Urban Regeneration," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    19. Rafał Figaj & Maciej Żołądek & Wojciech Goryl, 2020. "Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software," Energies, MDPI, vol. 13(14), pages 1-27, July.
    20. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.