IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1109-d1041050.html
   My bibliography  Save this article

Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset

Author

Listed:
  • Youngghyu Sun

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Jiyoung Lee

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Soohyun Kim

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Joonho Seon

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Seongwoo Lee

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Chanuk Kyeong

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

  • Jinyoung Kim

    (Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea)

Abstract

Energy theft causes a lot of economic losses every year. In the practical environment of energy theft detection, it is required to solve imbalanced data problem where normal user data are significantly larger than energy theft data. In this paper, a variational autoencoder-generative adversarial network (VAE-GAN)-based energy theft-detection model is proposed to overcome the imbalanced data problem. In the proposed model, the VAE-GAN generates synthetic energy theft data with the features of real energy theft data for augmenting the energy theft dataset. The obtained balanced dataset is applied to train a detector which is designed as one-dimensional convolutional neural network. The proposed model is simulated on the practical dataset for comparing with various generative models to evaluate their performance. From simulation results, it is confirmed that the proposed model outperforms the other existing models. Additionally, it is shown that the proposed model is also very useful in the environments of extreme data imbalance for a wide variety of applications by analyzing the performance of detector according to the balance rate.

Suggested Citation

  • Youngghyu Sun & Jiyoung Lee & Soohyun Kim & Joonho Seon & Seongwoo Lee & Chanuk Kyeong & Jinyoung Kim, 2023. "Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset," Energies, MDPI, vol. 16(3), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1109-:d:1041050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    2. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
    3. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    4. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    5. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    6. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    7. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    8. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    9. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    10. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    11. Xiaofeng Feng & Hengyu Hui & Ziyang Liang & Wenchong Guo & Huakun Que & Haoyang Feng & Yu Yao & Chengjin Ye & Yi Ding, 2020. "A Novel Electricity Theft Detection Scheme Based on Text Convolutional Neural Networks," Energies, MDPI, vol. 13(21), pages 1-17, November.
    12. Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
    13. Theyazn H. H. Aldhyani & Hasan Alkahtani, 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    14. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
    15. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    16. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    17. Cheong Hee Park & Taegong Kim, 2020. "Energy Theft Detection in Advanced Metering Infrastructure Based on Anomaly Pattern Detection," Energies, MDPI, vol. 13(15), pages 1-10, July.
    18. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
    19. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    20. Herodotos Herodotou, 2021. "Introduction to the Special Issue on Data-Intensive Computing in Smart Microgrids," Energies, MDPI, vol. 14(9), pages 1-3, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1109-:d:1041050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.