IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p910-d1034551.html
   My bibliography  Save this article

Numerical Study on Protective Measures for a Skid-Mounted Hydrogen Refueling Station

Author

Listed:
  • Zeying Zhao

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

  • Min Liu

    (Research Institute of State Grid Zhejiang Electric Power Company, Ltd., Hangzhou 310014, China)

  • Guoping Xiao

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

  • Tiancheng Cui

    (Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

  • Qingxin Ba

    (School of Mechanical Engineering, Shandong University, Jinan 250061, China)

  • Xuefang Li

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

Abstract

Hydrogen refueling stations are one of the key infrastructure components for the hydrogen-fueled economy. Skid-mounted hydrogen refueling stations (SHRSs) can be more easily commercialized due to their smaller footprints and lower costs compared to stationary hydrogen refueling stations. The present work modeled hydrogen explosions in a skid-mounted hydrogen refueling station to predict the overpressures for hydrogen-air mixtures and investigate the protective effects for different explosion vent layouts and protective wall distances. The results show that the explosive vents with the same vent area have similar overpressure reduction effects. The layout of the explosion vent affects the flame shape. Explosion venting can effectively reduce the inside maximum overpressure by 61.8%. The protective walls can reduce the overpressures, but the protective walls should not be too close to the SHRS because high overpressures are generated inside the walls due to the confined shock waves. The protective wall with a distance of 6 m can effectively protect the surrounding people and avoid the secondary overpressure damage to the container.

Suggested Citation

  • Zeying Zhao & Min Liu & Guoping Xiao & Tiancheng Cui & Qingxin Ba & Xuefang Li, 2023. "Numerical Study on Protective Measures for a Skid-Mounted Hydrogen Refueling Station," Energies, MDPI, vol. 16(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:910-:d:1034551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyung-Seok Kang & Sang-Min Kim & Jongtae Kim, 2022. "Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space," Energies, MDPI, vol. 15(20), pages 1-21, October.
    2. Mohsen Salimi & Morteza Hosseinpour & Tohid N.Borhani, 2022. "The Role of Clean Hydrogen Value Chain in a Successful Energy Transition of Japan," Energies, MDPI, vol. 15(16), pages 1-19, August.
    3. Joongoo Jeon & Sung Joong Kim, 2020. "Recent Progress in Hydrogen Flammability Prediction for the Safe Energy Systems," Energies, MDPI, vol. 13(23), pages 1-44, November.
    4. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    5. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    2. Yi Lian & Yunfeng Shang & Fangbin Qian, 2024. "RETRACTED ARTICLE: Spatial effects of green finance development in Chinese provinces under the context of high-quality energy development," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-32, April.
    3. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    4. Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
    5. Cemal Zehir & Mustafa Yücel & Alex Borodin & Sevgi Yücel & Songül Zehir, 2023. "Strategies in Energy Supply: A Social Network Analysis on the Energy Trade of the European Union," Energies, MDPI, vol. 16(21), pages 1-15, October.
    6. Ana Tereza Andrade Borba & Leonardo Jaime Machado Simões & Thamiles Rodrigues de Melo & Alex Álisson Bandeira Santos, 2024. "Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia," Energies, MDPI, vol. 17(3), pages 1-18, January.
    7. Sergey Zhironkin & Fares Abu-Abed & Elena Dotsenko, 2023. "The Development of Renewable Energy in Mineral Resource Clusters—The Case of the Siberian Federal District," Energies, MDPI, vol. 16(9), pages 1-28, April.
    8. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    9. Ewa Hącia & Natalia Wagner & Aleksandra Łapko, 2022. "The Importance of City Logistics for Urban Tourism Development: Searching for a New Research Field," Energies, MDPI, vol. 16(1), pages 1-17, December.
    10. Sun, Shaohui & Yan, Wei & Sun, Peiqin & Chen, Junwu, 2012. "Thermodynamic analysis of ethanol reforming for hydrogen production," Energy, Elsevier, vol. 44(1), pages 911-924.
    11. Ji, Zhaoqi & Perez-Page, Maria & Chen, Jianuo & Rodriguez, Romeo Gonzalez & Cai, Rongsheng & Haigh, Sarah J. & Holmes, Stuart M., 2021. "A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells," Energy, Elsevier, vol. 226(C).
    12. Ahmed Elkhatat & Shaheen Al-Muhtaseb, 2024. "Climate Change and Energy Security: A Comparative Analysis of the Role of Energy Policies in Advancing Environmental Sustainability," Energies, MDPI, vol. 17(13), pages 1-31, June.
    13. García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
    14. Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
    15. Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
    16. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    17. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    18. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    19. Singh, Neeraj Kumar & Kumari, Priyanka & Singh, Rajesh, 2021. "Intensified hydrogen yield using hydrogenase rich sulfate-reducing bacteria in bio-electrochemical system," Energy, Elsevier, vol. 219(C).
    20. Jarosław Brodny & Magdalena Tutak & Wes Grebski, 2024. "Empirical Assessment of the Efficiency of Poland’s Energy Transition Process in the Context of Implementing the European Union’s Energy Policy," Energies, MDPI, vol. 17(11), pages 1-36, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:910-:d:1034551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.