IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8126-d959421.html
   My bibliography  Save this article

Energy Security and Energy Transition to Achieve Carbon Neutrality

Author

Listed:
  • Mohammad Fazle Rabbi

    (Ihrig Károly Doctoral School of Management and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • József Popp

    (Department of Management, Faculty of Applied Sciences, WSB University, 41-300 Dabrowa Górnicza, Poland)

  • Domicián Máté

    (Department of Engineering Management and Entrepreneurship, Faculty of Engineering, University of Debrecen, H-4028 Debrecen, Hungary
    College of Business and Economics, University of Johannesburg, Johannesburg 2006, South Africa)

  • Sándor Kovács

    (Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

Successful energy transitions, also referred to as leapfrog development, present enormous prospects for EU nations to become carbon neutral by shifting from fossil fuels to renewable energy sources. Along with climate change, EU countries must address energy security and dependency issues, exacerbated by factors such as the COVID-19 pandemic, rising energy costs, conflicts between Russia and Ukraine, and political instability. Diversifying energy sources, generating renewable energy, increasing energy efficiency, preventing energy waste, and educating the public about environmental issues are proposed as several strategies. The study draws the conclusion that central European countries may transition to a clean energy economy and become carbon neutral on economic and strategic levels by locating alternative clean energy supply sources, reducing energy use, and producing renewable energy. According to the study, the EU energy industry can be decarbonised and attain energy security using three basic strategies, such as supply diversification, energy savings, and quicker adoption of renewable energy to replace fossil fuels. The energy transformation industry still needs to improve energy efficiency, incorporate a circular and sustainable bioeconomy, and support renewable energies, including solar, wind, hydropower, nuclear, and hydrogen.

Suggested Citation

  • Mohammad Fazle Rabbi & József Popp & Domicián Máté & Sándor Kovács, 2022. "Energy Security and Energy Transition to Achieve Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8126-:d:959421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollen, Johannes & Hers, Sebastiaan & van der Zwaan, Bob, 2010. "An integrated assessment of climate change, air pollution, and energy security policy," Energy Policy, Elsevier, vol. 38(8), pages 4021-4030, August.
    2. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    3. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    4. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    5. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    6. Afsharzade, Nashmil & Papzan, Abdolhamid & Ashjaee, Mehdi & Delangizan, Sohrab & Van Passel, Steven & Azadi, Hossein, 2016. "Renewable energy development in rural areas of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 743-755.
    7. David McCollum & Volker Krey & Keywan Riahi & Peter Kolp & Arnulf Grubler & Marek Makowski & Nebojsa Nakicenovic, 2013. "Climate policies can help resolve energy security and air pollution challenges," Climatic Change, Springer, vol. 119(2), pages 479-494, July.
    8. Jun, Eunju & Kim, Wonjoon & Chang, Soon Heung, 2009. "The analysis of security cost for different energy sources," Applied Energy, Elsevier, vol. 86(10), pages 1894-1901, October.
    9. Barbir, Frano, 2009. "Transition to renewable energy systems with hydrogen as an energy carrier," Energy, Elsevier, vol. 34(3), pages 308-312.
    10. Domicián Máté & Mohammad Fazle Rabbi & Adam Novotny & Sándor Kovács, 2020. "Grand Challenges in Central Europe: The Relationship of Food Security, Climate Change, and Energy Use," Energies, MDPI, vol. 13(20), pages 1-16, October.
    11. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    12. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    13. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    14. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    15. Lueken, Roger & Klima, Kelly & Griffin, W. Michael & Apt, Jay, 2016. "The climate and health effects of a USA switch from coal to gas electricity generation," Energy, Elsevier, vol. 109(C), pages 1160-1166.
    16. duPont, Carolyn M. & Levitt, James N. & Bilmes, Linda J., 2015. "Green Bonds and Land Conservation: The Evolution of a New Financing Tool," Working Paper Series 15-072, Harvard University, John F. Kennedy School of Government.
    17. Nielsen, Lene & Jeppesen, Tim, 2003. "Tradable Green Certificates in selected European countries--overview and assessment," Energy Policy, Elsevier, vol. 31(1), pages 3-14, January.
    18. Mohammad Fazle Rabbi & Morshadul Hasan & Sándor Kovács, 2021. "Food Security and Transition towards Sustainability," Sustainability, MDPI, vol. 13(22), pages 1-21, November.
    19. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    20. Jewell, Jessica & Cherp, Aleh & Riahi, Keywan, 2014. "Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices," Energy Policy, Elsevier, vol. 65(C), pages 743-760.
    21. Norifumi Tsujikawa & Shoji Tsuchida & Takamasa Shiotani, 2016. "Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 98-113, January.
    22. Gunningham, Neil, 2013. "Managing the energy trilemma: The case of Indonesia," Energy Policy, Elsevier, vol. 54(C), pages 184-193.
    23. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    24. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    2. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    3. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens, 2023. "The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    4. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    5. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    6. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    7. Herie Park & Sungwoo Bae, 2021. "Quantitative Assessment of Energy Supply Security: Korea Case Study," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    8. Gracceva, Francesco & Zeniewski, Peter, 2014. "A systemic approach to assessing energy security in a low-carbon EU energy system," Applied Energy, Elsevier, vol. 123(C), pages 335-348.
    9. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    10. Welder, Lara & Ryberg, D.Severin & Kotzur, Leander & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2018. "Spatio-temporal optimization of a future energy system for power-to-hydrogen applications in Germany," Energy, Elsevier, vol. 158(C), pages 1130-1149.
    11. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    12. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    13. Ashfaq, Asad & Ianakiev, Anton, 2018. "Cost-minimised design of a highly renewable heating network for fossil-free future," Energy, Elsevier, vol. 152(C), pages 613-626.
    14. Coutinho, Gabriel Leuzinger & Vianna, João Nildo & Dias, Maria Amélia, 2020. "Alternatives for improving energy security in Cape Verde," Utilities Policy, Elsevier, vol. 67(C).
    15. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    16. Belén del-Río & Ana Fernández-Sainz & Itziar Martinez de Alegria, 2022. "Assessing the energy trilemma through the diversity of the energy mix: the case of India," SN Business & Economics, Springer, vol. 2(9), pages 1-26, September.
    17. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
    18. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    19. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    20. Ekholm, Tommi & Karvosenoja, Niko & Tissari, Jarkko & Sokka, Laura & Kupiainen, Kaarle & Sippula, Olli & Savolahti, Mikko & Jokiniemi, Jorma & Savolainen, Ilkka, 2014. "A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies," Energy Policy, Elsevier, vol. 74(C), pages 499-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8126-:d:959421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.