IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i24p8067-d1300244.html
   My bibliography  Save this article

Heat Transfer Mechanism of Heat–Cold Alternate Extraction in a Shallow Geothermal Buried Pipe System under Multiple Heat Exchanger Groups

Author

Listed:
  • Jianlong Shi

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Wei Zhang

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China
    New-Energy Development Center, Shengli Oilfield of Sinopec, Dongying 257001, China)

  • Mingjian Wang

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Chunguang Wang

    (College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Zhengnan Wei

    (New-Energy Development Center, Shengli Oilfield of Sinopec, Dongying 257001, China)

  • Dong Wang

    (New-Energy Development Center, Shengli Oilfield of Sinopec, Dongying 257001, China)

  • Peng Zheng

    (Qingdao Wofu New Energy Technology Co., Ltd., Qingdao 266100, China)

Abstract

Shallow geothermal energy usually uses underground buried pipes to achieve the purpose of extracting heat while storing cold in winter and extracting cold while storing heat in summer. However, the heat transfer mechanism under the alternate operation of heat–cold extraction in winter and summer under multiple heat exchanger groups is still worth studying. Based on the constructed flow and heat transfer model in pipelines and reservoirs, this study first analyzes the temperature field evolution of a shallow buried pipe system (SBPS) under the alternate operation of heat–cold extraction, and then discusses the heat transfer performance under different pipeline flow rates, pipeline wall thermal conductivity, heat injection durations, numbers of heat exchanger groups, and flows of underground fluid. The results show that the continuous alternating process of heat–cold extraction has a promoting effect on the temperature increase or decrease in the next operating cycle due to the low- or high-temperature zone produced in the previous operating cycle. As the number of multiple heat exchanger groups increases, the heat transfer efficiency of the SBPS significantly improves. With a rise in the groundwater flow velocity, the heat transfer efficiency first decreases and then increases.

Suggested Citation

  • Jianlong Shi & Wei Zhang & Mingjian Wang & Chunguang Wang & Zhengnan Wei & Dong Wang & Peng Zheng, 2023. "Heat Transfer Mechanism of Heat–Cold Alternate Extraction in a Shallow Geothermal Buried Pipe System under Multiple Heat Exchanger Groups," Energies, MDPI, vol. 16(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8067-:d:1300244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/24/8067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/24/8067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xueping & Li, Gui & Han, Zongwei & Yang, Ziwei & Bi, Weiqiang & Li, Xiuming & Yang, Lingyan, 2023. "Study on the influence of buried pipe fault on the operation of ground source heat pump system," Renewable Energy, Elsevier, vol. 210(C), pages 12-25.
    2. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    3. Wenjing Li & Wenke Zhang & Zhenxing Li & Haiqing Yao & Ping Cui & Fangfang Zhang, 2022. "Investigation of the Heat Transfer Performance of Multi-Borehole Double-Pipe Heat Exchangers in Medium-Shallow Strata," Energies, MDPI, vol. 15(13), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.
    2. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    4. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    5. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    6. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    7. Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
    8. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    9. Esa Dube Kerme & Alan S. Fung & Wey H. Leong, 2024. "Analysis of the Combined Effect of Major Influencing Parameters for Designing High-Performance Single (sBHE) and Double (dBHE) U-Tube Borehole Heat Exchangers," Energies, MDPI, vol. 17(11), pages 1-52, May.
    10. Zhang, Changxing & Lu, Jiahui & Wang, Xinjie & Xu, Hang & Sun, Shicai, 2022. "Effect of geological stratification on estimated accuracy of ground thermal parameters in thermal response test," Renewable Energy, Elsevier, vol. 186(C), pages 585-595.
    11. Zhang, Changxing & Lu, Xizheng & Guo, Yanlong & Xu, Chong & Peng, Donggen, 2024. "Thermal performance of two-independent-circuit borehole heat exchanger in solar-assisted ground source heat pump system," Renewable Energy, Elsevier, vol. 230(C).
    12. Deng, Fengqiang & Li, Wei & Pei, Peng & Wang, Lin & Ren, Yonglin, 2024. "Study on design and calculation method of borehole heat exchangers based on seasonal patterns of groundwater," Renewable Energy, Elsevier, vol. 220(C).
    13. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    14. Khaled Salhein & C. J. Kobus & Mohamed Zohdy & Ahmed M. Annekaa & Edrees Yahya Alhawsawi & Sabriya Alghennai Salheen, 2024. "Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 17(19), pages 1-28, October.
    15. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Pedro Carrasco García & Luis Santiago Sánchez Pérez & Diego González-Aguilera, 2017. "Efficiency Analysis of the Main Components of a Vertical Closed-Loop System in a Borehole Heat Exchanger," Energies, MDPI, vol. 10(2), pages 1-15, February.
    16. Farzaneh-Gord, Mahmood & Ghezelbash, Reza & Sadi, Meisam & Moghadam, Ali Jabari, 2016. "Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment," Energy, Elsevier, vol. 112(C), pages 998-1014.
    17. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    18. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    20. Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8067-:d:1300244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.