IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v166y2020icp20-34.html
   My bibliography  Save this article

Heat transfer performance of a deep ground heat exchanger for building heating in long-term service

Author

Listed:
  • Li, Chao
  • Guan, Yanling
  • Liu, Jianhong
  • Jiang, Chao
  • Yang, Ruitao
  • Hou, Xueming

Abstract

Based on an experimental project of a deeply buried coaxial double-pipe with a burial depth of 2539 m in Xi’an, Shaanxi Province, China, this study gave due consideration to the symmetry of a buried pipe structure, built a full-scale axisymmetric model for heat transfer inside and outside the coupled pipe, and verified the reliability of the model. The vertical initial temperature distribution, lithology, and thermophysical parameters of the surrounding ground of the buried pipe in the model came from the optical fiber temperature measurement of the vertical borehole wall, the interpretation of drilling data, and the experimental detection of drilling cores, respectively. This study discusses the variations in ground temperature and thermal effective radius with time in the 50-year service process of the buried pipe based upon the model, explored the heat transfer performance of the buried pipe under different constant heat transfer loads and inlet water temperatures, and analyzed the attenuation rules of its water temperature or heat transfer capacity in long-term service.

Suggested Citation

  • Li, Chao & Guan, Yanling & Liu, Jianhong & Jiang, Chao & Yang, Ruitao & Hou, Xueming, 2020. "Heat transfer performance of a deep ground heat exchanger for building heating in long-term service," Renewable Energy, Elsevier, vol. 166(C), pages 20-34.
  • Handle: RePEc:eee:renene:v:166:y:2020:i:c:p:20-34
    DOI: 10.1016/j.renene.2020.11.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    2. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    3. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    4. Huang, Yibin & Zhang, Yanjun & Xie, Yangyang & Zhang, Yu & Gao, Xuefeng & Ma, Jingchen, 2020. "Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor," Energy, Elsevier, vol. 210(C).
    5. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    6. Aira, Roberto & Fernández-Seara, José & Diz, Rubén & Pardiñas, Ángel Á., 2017. "Experimental analysis of a ground source heat pump in a residential installation after two years in operation," Renewable Energy, Elsevier, vol. 114(PB), pages 1214-1223.
    7. Liu, Xiaobing & Lu, Shilei & Hughes, Patrick & Cai, Zhe, 2015. "A comparative study of the status of GSHP applications in the United States and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 558-570.
    8. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    9. Mottaghy, Darius & Dijkshoorn, Lydia, 2012. "Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code," Renewable Energy, Elsevier, vol. 45(C), pages 59-71.
    10. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    11. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    12. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    13. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    14. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Changlong & Sun, Wanyu & Fu, Qiang & Lu, Yuehong & Zhang, Pengyuan, 2024. "Semi-analytical and numerical modeling of U-bend deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 222(C).
    2. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    3. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    4. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Kai & Wu, Jiale & Xu, Jiamin & Wang, Jiachen, 2024. "Simplified method and numerical simulation analysis of pipe-group long-term heat transfer in deep-ground heat exchangers," Energy, Elsevier, vol. 299(C).
    5. Li, Chao & Jiang, Chao & Guan, Yanling, 2022. "An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles," Energy, Elsevier, vol. 244(PA).
    6. huajun, Wang & Yishuo, Xu & Yukun, Sun & Sumin, Zhao, 2022. "Heat extraction by deep coaxial borehole heat exchanger for clean space heating near Beijing, China: Field test, model comparison and operation pattern evaluation," Renewable Energy, Elsevier, vol. 199(C), pages 803-815.
    7. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    8. Deng, Jiewen & Peng, Chenwei & Su, Yangyang & Qiang, Wenbo & Cai, Wanlong & Wei, Qingpeng, 2023. "Research on the heat storage characteristic of deep borehole heat exchangers under intermittent operation mode: Simulation analysis and comparative study," Energy, Elsevier, vol. 282(C).
    9. Gascuel, Violaine & Rivard, Christine & Raymond, Jasmin, 2024. "Deep geothermal doublets versus deep borehole heat exchangers: A comparative study for cold sedimentary basins," Applied Energy, Elsevier, vol. 361(C).
    10. Isa Kolo & Christopher S. Brown & Gioia Falcone & David Banks, 2023. "Repurposing a Geothermal Exploration Well as a Deep Borehole Heat Exchanger: Understanding Long-Term Effects of Lithological Layering, Flow Direction, and Circulation Flow Rate," Sustainability, MDPI, vol. 15(5), pages 1-24, February.
    11. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    12. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    13. Zhang, Sheng & Liu, Jun & Zhang, Xia & Wang, Fenghao, 2024. "Properly shortening design time scale of medium-deep borehole heat exchanger for high building heating performances with high computational efficiency," Energy, Elsevier, vol. 290(C).
    14. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    15. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    2. Cai, Wanlong & Wang, Fenghao & Chen, Chaofan & Chen, Shuang & Liu, Jun & Ren, Zhanli & Shao, Haibing, 2022. "Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts," Energy, Elsevier, vol. 241(C).
    3. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    4. Li, Chao & Jiang, Chao & Guan, Yanling & Tan, Zijing & Zhao, Zhiqiang & Zhou, Yang, 2022. "Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes," Energy, Elsevier, vol. 255(C).
    5. Li, Chao & Jiang, Chao & Guan, Yanling, 2022. "An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles," Energy, Elsevier, vol. 244(PA).
    6. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    7. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    8. Luo, Yongqiang & Xu, Guozhi & Zhang, Shicong & Cheng, Nan & Tian, Zhiyong & Yu, Jinghua, 2022. "Heat extraction and recover of deep borehole heat exchanger: Negotiating with intermittent operation mode under complex geological conditions," Energy, Elsevier, vol. 241(C).
    9. Yao, Jian & Liu, Wenjie & Zhang, Lu & Tian, Binshou & Dai, Yanjun & Huang, Mingjun, 2020. "Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump," Renewable Energy, Elsevier, vol. 160(C), pages 160-175.
    10. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "Heat Transfer Modeling on High-Temperature Charging and Discharging of Deep Borehole Heat Exchanger with Transient Strong Heat Flux," Sustainability, MDPI, vol. 14(15), pages 1-34, August.
    11. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    12. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    13. Chen, Hongfei & Liu, Hongtao & Yang, Fuxin & Tan, Houzhang & Wang, Bangju, 2023. "Field measurements and numerical investigation on heat transfer characteristics and long-term performance of deep borehole heat exchangers," Renewable Energy, Elsevier, vol. 205(C), pages 1125-1136.
    14. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    15. Li, Chao & Jiang, Chao & Guan, Yanling & Chen, Hao & Yang, Ruitao & Wan, Rong & Shen, Lu, 2023. "Comparison of the experimental and numerical results of coaxial-type and U-type deep-buried pipes’ heat transfer performances," Renewable Energy, Elsevier, vol. 210(C), pages 95-106.
    16. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    17. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    18. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    19. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    20. Shen, Junhao & Zhou, Chaohui & Luo, Yongqiang & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Ling, Zhang, 2023. "Comprehensive thermal performance analysis and optimization study on U-type deep borehole ground source heat pump systems based on a new analytical model," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:166:y:2020:i:c:p:20-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.