IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220313438.html
   My bibliography  Save this article

Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media

Author

Listed:
  • Jin, Guang
  • Li, Zheng
  • Guo, Shaopeng
  • Wu, Xuan
  • Wu, Wenfei
  • Zhang, Kai

Abstract

Based on the finite line source (FLS) model, A heat transfer model considering both multilayer soil and multiple Borehole Heat Exchangers (BHEs) is proposed. The accuracy of the model is verified by experiments. The model is used to study the effect of thermal physical properties of multilayer geological media on the overall thermal efficiency of multiple BHEs. The dimensionless regional thermal efficiency (E) is introduced as an evaluation index of heat transfer characteristics of multiple BHEs. Under a certain geological structure, the heat transfer efficiency of multiple BHEs in homogeneous soils and multilayer soils were compared with the analytical model. The results show that the E of the multilayer multiple BHEs model is less than that of the homogeneous multiple BHEs model, with the maximum difference being 11.43% in 2,000 h. With these thermal properties and soil layer structure, the rate at which E decrease for the multilayer model is a factor of 4 higher than that for the homogeneous model. In the soil layer where the thermal interaction is the most intense, the unit Heat Transfer Rate (HTR) decreased by 25.3%. At a fixed spacing, the thermal diffusivity is the key to determining the degree of thermal interaction. Under the 4 × 4 BHEs layout, the dynamic performance loss increases by about 4% for every 1 × 10−7 m2/s increase in soil thermal diffusivity. When the multiple BHEs are in a multilayer geological media with a large difference in thermal properties (especially thermal diffusivity), a comprehensive multilayer analysis is needed to obtain the thermal efficiency of the overall multiple BHE area accurately. The multilayer multiple finite line source model can be used during the engineering design stages of a BHE field to predict the regional thermal efficiency with borehole spacing and the number of boreholes.

Suggested Citation

  • Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220313438
    DOI: 10.1016/j.energy.2020.118236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Seong-Kyun & Bae, Gwang-Ok & Lee, Kang-Kun & Song, Yoonho, 2010. "Field-scale evaluation of the design of borehole heat exchangers for the use of shallow geothermal energy," Energy, Elsevier, vol. 35(2), pages 491-500.
    2. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    3. Fossa, Marco & Minchio, Fabio, 2013. "The effect of borefield geometry and ground thermal load profile on hourly thermal response of geothermal heat pump systems," Energy, Elsevier, vol. 51(C), pages 323-329.
    4. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.
    5. Zhang, Changxing & Wang, Yusheng & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2018. "Computational methods for ground thermal response of multiple borehole heat exchangers: A review," Renewable Energy, Elsevier, vol. 127(C), pages 461-473.
    6. Lee, C.K., 2011. "Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation," Applied Energy, Elsevier, vol. 88(12), pages 4405-4410.
    7. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Panayides, Ioannis & Joseph-Stylianou, Josephina & Zomeni, Zomenia, 2012. "Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration," Energy, Elsevier, vol. 48(1), pages 233-240.
    8. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    9. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    10. Raymond, J. & Lamarche, L., 2013. "Simulation of thermal response tests in a layered subsurface," Applied Energy, Elsevier, vol. 109(C), pages 293-301.
    11. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    12. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    13. Florides, G. & Theofanous, E. & Iosif-Stylianou, I. & Tassou, S. & Christodoulides, P. & Zomeni, Z. & Tsiolakis, E. & Kalogirou, S. & Messaritis, V. & Pouloupatis, P. & Panayiotou, G., 2013. "Modeling and assessment of the efficiency of horizontal and vertical ground heat exchangers," Energy, Elsevier, vol. 58(C), pages 655-663.
    14. Marcotte, D. & Pasquier, P. & Sheriff, F. & Bernier, M., 2010. "The importance of axial effects for borehole design of geothermal heat-pump systems," Renewable Energy, Elsevier, vol. 35(4), pages 763-770.
    15. Badescu, Viorel, 2007. "Economic aspects of using ground thermal energy for passive house heating," Renewable Energy, Elsevier, vol. 32(6), pages 895-903.
    16. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    17. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    18. Lee, C.K. & Lam, H.N., 2012. "A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow," Energy, Elsevier, vol. 47(1), pages 378-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Changxing & Lu, Xizheng & Liu, Yufeng & Lu, Jiahui & Sun, Shicai, 2023. "Effect of seepage condition in geological stratification on thermal response test analysis of borehole heat exchanger," Renewable Energy, Elsevier, vol. 205(C), pages 813-822.
    2. Guo, Y. & Huang, G. & Liu, W.V., 2023. "A new semi-analytical solution addressing varying heat transfer rates for U-shaped vertical borehole heat exchangers in multilayered ground," Energy, Elsevier, vol. 274(C).
    3. Chen, Wen & Zhou, Chaohui & Huang, Xinyu & Luo, Hanbin & Luo, Yongqiang & Cheng, Nan & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Zhang, Ling, 2024. "Study on thermal radius and capacity of multiple deep borehole heat exchangers: Analytical solution, algorithm and application based on Response Factor Matrix method (RFM)," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    3. Yong Li & Shibin Geng & Xu Han & Hua Zhang & Fusheng Peng, 2017. "Performance Evaluation of Borehole Heat Exchanger in Multilayered Subsurface," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    4. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    5. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    6. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    7. Li, Wenxin & Li, Xiangdong & Wang, Yong & Du, Ruiqing & Tu, Jiyuan, 2019. "Effect of the heat load distribution on thermal performance predictions of ground heat exchangers in a stratified subsurface," Renewable Energy, Elsevier, vol. 141(C), pages 340-348.
    8. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    9. Cassina, Lisa & Laloui, Lyesse & Rotta Loria, Alessandro F., 2022. "Thermal interactions among vertical geothermal borehole fields," Renewable Energy, Elsevier, vol. 194(C), pages 1204-1220.
    10. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    11. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    12. Halilovic, Smajil & Böttcher, Fabian & Zosseder, Kai & Hamacher, Thomas, 2023. "Optimizing the spatial arrangement of groundwater heat pumps and their well locations," Renewable Energy, Elsevier, vol. 217(C).
    13. Zhang, Changxing & Lu, Xizheng & Liu, Yufeng & Lu, Jiahui & Sun, Shicai, 2023. "Effect of seepage condition in geological stratification on thermal response test analysis of borehole heat exchanger," Renewable Energy, Elsevier, vol. 205(C), pages 813-822.
    14. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    15. Pouloupatis, Panayiotis D. & Tassou, Savvas A. & Christodoulides, Paul & Florides, Georgios A., 2017. "Parametric analysis of the factors affecting the efficiency of ground heat exchangers and design application aspects in Cyprus," Renewable Energy, Elsevier, vol. 103(C), pages 721-728.
    16. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    17. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    18. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    19. Zhou, Guoqing & Zhou, Yang & Zhang, Donghai, 2016. "Analytical solutions for two pile foundation heat exchanger models in a double-layered ground," Energy, Elsevier, vol. 112(C), pages 655-668.
    20. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220313438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.