IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010425.html
   My bibliography  Save this article

Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China

Author

Listed:
  • Jia, Linrui
  • Lu, Lin
  • Chen, Jianheng

Abstract

Practical implementation of radiative sky cooling (RSC) in an active manner requires thoughtful system design. This study proposes a hybrid system that combines ground source heat pump (GSHP) and all-day RSC radiators (RSCR) to improve the systematical energy efficiency and assesses the cooling potential of RSCR as a supplemental part in GSHP across China using regional meteorological data. The study systematically evaluates the advantages in the energy efficiency of the hybrid system, the temporal cooling potential variability of RSCR in seven geographic regions of China, and the effects of varied radiative coatings with different spectral properties on the cooling capacity. The results indicate that the annual average cooling power provided by RSCR ranges between 149.7 and 484.6 W/m2 across all regions of China, with the highest cooling potential of 336.5 W/m2 observed in the cold region of north China and the lowest cooling potential of 178.3 W/m2 in the tropical region of south China. Compared with the stand-alone GSHP system, the heat rejected into the ground can be reduced by 20.6% on the nationwide average, and the nationwide average coefficient of performance (COP) of the proposed system can be increased by 18.6% due to the additional cooling contributions from RSCRs. All seven regions show promising cooling capacities for using RSCR as a supplemental heat rejector in winter compared to summer, with the maximum cooling power production of 453.6 W/m2 observed in winter in northeast China, corresponding to a temperature drop in RSCRs of 4.1 °C. The comparison between the diurnal and nocturnal cooling power productions across China reveals that the nocturnal cooling potential is higher than the diurnal scenario, with an average deviation of −66.2%, ranging from −53.7% to −78.8%. Moreover, compared to the ideal RSCR, the practical RSCR has a smaller radiative cooling power production (−18.2%) but a larger convective cooling power production (+1.6%), resulting from the relatively higher surface temperature on the practical RSCR, and the ideal RSCR-assisted GSHP system is 5.0% higher than that of the practical RSCR-assisted GSHP system regarding the nationwide average COP. The findings of this study can provide valuable insights into the better utilization of this energy-saving technology across a variety of weather conditions in China.

Suggested Citation

  • Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010425
    DOI: 10.1016/j.apenergy.2023.121678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagiorgas, H.S. & Mihalakakou, G., 2008. "Experimental and theoretical investigation of a nocturnal radiator for space cooling," Renewable Energy, Elsevier, vol. 33(6), pages 1220-1227.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Eli A. Goldstein & Aaswath P. Raman & Shanhui Fan, 2017. "Sub-ambient non-evaporative fluid cooling with the sky," Nature Energy, Nature, vol. 2(9), pages 1-7, September.
    5. Bartoli, B. & Catalanotti, S. & Coluzzi, B. & Cuomo, V. & Silvestrini, V. & Troise, G., 1977. "Nocturnal and diurnal performances of selective radiators," Applied Energy, Elsevier, vol. 3(4), pages 267-286, October.
    6. Liu, Junwei & Zhou, Zhihua & Zhang, Debao & Jiao, Shifei & Zhang, Ying & Luo, Longfei & Zhang, Zhuofen & Gao, Feng, 2020. "Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside," Renewable Energy, Elsevier, vol. 155(C), pages 90-99.
    7. Zhang, Fangfang & Fang, Liang & Jia, Linrui & Man, Yi & Cui, Ping & Zhang, Wenke & Fang, Zhaohong, 2021. "A dimension reduction algorithm for numerical simulation of multi-borehole heat exchangers," Renewable Energy, Elsevier, vol. 179(C), pages 2235-2245.
    8. Zhao, Dongliang & Martini, Christine Elizabeth & Jiang, Siyu & Ma, Yaoguang & Zhai, Yao & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2017. "Development of a single-phase thermosiphon for cold collection and storage of radiative cooling," Applied Energy, Elsevier, vol. 205(C), pages 1260-1269.
    9. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    10. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    11. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    12. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    13. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    2. Rui-Jia Liu & Lin-Rui Jia & Wen-Shuo Zhang & Ming-Zhi Yu & Xu-Dong Zhao & Ping Cui, 2024. "Study of Heat Transfer Characteristics and Economic Analysis of a Closed Deep Coaxial Geothermal Heat Exchanger Retrofitted from an Abandoned Oil Well," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    3. Jianheng Chen & Lin Lu & Linrui Jia & Quan Gong, 2023. "Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    4. Kai Jiao & Lin Lu & Liang Zhao & Gang Wang, 2024. "Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes," Sustainability, MDPI, vol. 16(15), pages 1-27, July.
    5. Jia, Linrui & Lu, Lin & Gong, Quan & Jiao, Kai, 2024. "Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Jia, Linrui & Lu, Lin & Chen, Jianheng & Han, Jie, 2022. "A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions," Applied Energy, Elsevier, vol. 322(C).
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    5. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    8. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    9. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    10. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    11. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    12. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    13. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    14. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    15. Li, Haoran & Zhang, Kai & Shi, Zijie & Jiang, Kaiyu & Wu, Bingyang & Ye, Peiliang, 2023. "Cooling benefit of implementing radiative cooling on a city-scale," Renewable Energy, Elsevier, vol. 212(C), pages 372-381.
    16. Byoungsu Ko & Dasol Lee & Trevon Badloe & Junsuk Rho, 2018. "Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling," Energies, MDPI, vol. 12(1), pages 1-14, December.
    17. Amir, A. & van Hout, R., 2019. "A transient model for optimizing a hybrid nocturnal sky radiation cooling system," Renewable Energy, Elsevier, vol. 132(C), pages 370-380.
    18. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    20. Wong, Ross Y.M. & Tso, C.Y. & Jeong, S.Y. & Fu, S.C. & Chao, Christopher Y.H., 2023. "Critical sky temperatures for passive radiative cooling," Renewable Energy, Elsevier, vol. 211(C), pages 214-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.