IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics030626192300572x.html
   My bibliography  Save this article

Collective behavior of boreholes and its optimization to maximize BTES performance

Author

Listed:
  • Ekmekci, Ece
  • Ozturk, Z. Fatih
  • Sisman, Altug

Abstract

Borehole layout strongly affects the behavior of borehole heat exchangers (BHEs) and changes the performance of a borehole thermal energy storage (BTES). This study investigates the existence and importance of the optimum collective behavior of BHEs to maximize the performance of BTES. Charge benefit ratio, storage efficiency and configurational benefit factor are proposed as performance indicators for better and finer performance evaluations of BTES systems. A small-scale BTES consisting of ten boreholes arranged on a concentric double-ring layout is considered as an application. Performance variations with the inner and the outer radii of the borehole field are analyzed for the first five years of operation. The temperature fields of different configurations show the transition from collective to individual behavior of boreholes, which leads to an optimal radial configuration maximizing the performance indicators. It is seen that the indicators strongly depend on both inner and outer radii and they reach their maximums for the same distinct radial configuration. The optimum arrangement can almost double the thermal performance indicators. It is thus of great importance to optimize collective behavior to maximize the usage of stored thermal energy. The results are qualitatively general and represent the common behavioral patterns of BTES systems.

Suggested Citation

  • Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s030626192300572x
    DOI: 10.1016/j.apenergy.2023.121208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192300572X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    3. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    4. Lundh, M. & Dalenbäck, J.-O., 2008. "Swedish solar heated residential area with seasonal storage in rock: Initial evaluation," Renewable Energy, Elsevier, vol. 33(4), pages 703-711.
    5. Başer, Tuğçe & McCartney, John S., 2020. "Transient evaluation of a soil-borehole thermal energy storage system," Renewable Energy, Elsevier, vol. 147(P2), pages 2582-2598.
    6. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    7. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    8. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Claesson, Johan & Eskilson, Per, 1988. "Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules," Energy, Elsevier, vol. 13(6), pages 509-527.
    10. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    11. Carvalho, Anabela Duarte & Mendrinos, Dimitris & De Almeida, Anibal T., 2015. "Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 755-768.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    14. Luo, Jin & Rohn, Joachim & Bayer, Manfred & Priess, Anna & Xiang, Wei, 2014. "Analysis on performance of borehole heat exchanger in a layered subsurface," Applied Energy, Elsevier, vol. 123(C), pages 55-65.
    15. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    16. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    17. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    18. Liu, Jun & Wang, Fenghao & Cai, Wanlong & Wang, Zhihua & Li, Chun, 2020. "Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 149(C), pages 384-399.
    19. Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
    20. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekmekci, Ece & Aydin, Murat & Ozturk, Z. Fatih & Sisman, Altug, 2024. "Very high temperature BTES: A potential for operationally cost-free and emission-free heating," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekmekci, Ece & Aydin, Murat & Ozturk, Z. Fatih & Sisman, Altug, 2024. "Very high temperature BTES: A potential for operationally cost-free and emission-free heating," Applied Energy, Elsevier, vol. 360(C).
    2. Brunetti, Giuseppe & Saito, Hirotaka & Saito, Takeshi & Šimůnek, Jiří, 2017. "A computationally efficient pseudo-3D model for the numerical analysis of borehole heat exchangers," Applied Energy, Elsevier, vol. 208(C), pages 1113-1127.
    3. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    4. Hirvijoki, Eero & Hirvonen, Janne, 2022. "The potential of intermediate-to-deep geothermal boreholes for seasonal storage of district heat," Renewable Energy, Elsevier, vol. 198(C), pages 825-832.
    5. Luo, Yongqiang & Xu, Guozhi & Cheng, Nan, 2021. "Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers," Renewable Energy, Elsevier, vol. 179(C), pages 604-624.
    6. Tang, Fujiao & Nowamooz, Hossein, 2019. "Sensitive analysis on the effective soil thermal conductivity of the Thermal Response Test considering various testing times, field conditions and U-pipe lengths," Renewable Energy, Elsevier, vol. 143(C), pages 1732-1743.
    7. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    8. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    9. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    10. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    11. Yang, Tianrun & Liu, Wen & Sun, Qie & Hu, Weihao & Kramer, Gert Jan, 2023. "Techno-economic-environmental analysis of seasonal thermal energy storage with solar heating for residential heating in China," Energy, Elsevier, vol. 283(C).
    12. Kordas, Olga & Nikiforovich, Eugene, 2019. "A phenomenological theory of steady-state vertical geothermal systems: A novel approach," Energy, Elsevier, vol. 175(C), pages 23-35.
    13. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Wang, Xiaozhe & Zhang, Hao & Cui, Lin & Wang, Jingying & Lee, Chunhian & Zhu, Xiaoxuan & Dong, Yong, 2024. "Borehole thermal energy storage for building heating application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    15. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    16. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    18. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2016. "Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 724-738.
    19. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    20. Maria Isabel Vélez Márquez & Jasmin Raymond & Daniela Blessent & Mikael Philippe & Nataline Simon & Olivier Bour & Louis Lamarche, 2018. "Distributed Thermal Response Tests Using a Heating Cable and Fiber Optic Temperature Sensing," Energies, MDPI, vol. 11(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s030626192300572x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.