IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7400-d673337.html
   My bibliography  Save this article

Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes

Author

Listed:
  • Chao Huan

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Sha Zhang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Xiaoxuan Zhao

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Shengteng Li

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Sustainable Buildings Research Centre (SBRC), Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Bo Zhang

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Yujiao Zhao

    (Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi’an 710054, China)

  • Pengfei Tao

    (Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710021, China)

Abstract

The combined mine backfill–geothermal (CMBG) system can be used to effectively extract geothermal energy by installing a heat exchange tube (HET) in the underground backfilled stopes of mines, which can be used as the heat supply for buildings in mines and the surrounding areas. The efficient performance of this system strongly depends on the thermal exchange process between the HET and its surrounding cemented paste backfill body (CPB). In this study, a validated simulation model is established to investigate the heat exchange performance of CPB, in which the nonuniformly distributed thermal properties in CPB are fully considered. The results indicate that the increase in the porosity has a negative effect on the heat exchange performance of CPB. With the increase in the porosity, the decreased rate of the conductive heat transfer in CPB could be up to approximately 18%. In conditions with seepage flow, the heat transfer capacity of CPB could be effectively improved. Generally, a higher hydraulic conductivity corresponds to a higher heat transfer performance of CPB. When the seepage velocity rose from 2 × 10 −6 to 6 × 10 −6 m/s, the thermal conductivity of CPB achieved a 114% increase from 1.843 to 3.957 W/(m·K). Furthermore, it was found that the thermal energy accumulates along the seepage flow direction, enhancing the thermal influencing radius of the HET in this direction. Thus, the arrangement of HETs should fully take into account the seepage flow effect. This proposed simulation model could provide a reference for parameter determination and optimization of CMBG systems.

Suggested Citation

  • Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7400-:d:673337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    2. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    3. Hall, Andrew & Scott, John Ashley & Shang, Helen, 2011. "Geothermal energy recovery from underground mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 916-924, February.
    4. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    5. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2013. "Single and double U-tube ground heat exchangers in multiple-layer substrates," Applied Energy, Elsevier, vol. 102(C), pages 364-373.
    6. Lee, C.K. & Lam, H.N., 2012. "A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow," Energy, Elsevier, vol. 47(1), pages 378-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    2. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    3. Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
    4. Yong Li & Shibin Geng & Xu Han & Hua Zhang & Fusheng Peng, 2017. "Performance Evaluation of Borehole Heat Exchanger in Multilayered Subsurface," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    5. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    6. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    7. Li, Chao & Guan, Yanling & Wang, Xing & Li, Gaopeng & Zhou, Cong & Xun, Yingjiu, 2018. "Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy," Energy, Elsevier, vol. 142(C), pages 689-701.
    8. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    9. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Christoph P. Kiefer & Pablo Del Río González & Javier Carrillo‐Hermosilla, 2019. "Drivers and barriers of eco‐innovation types for sustainable transitions: A quantitative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 155-172, January.
    11. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    12. Moritz Bohland & Sebastian Schwenen, 2020. "Technology Policy and Market Structure: Evidence from the Power Sector," Discussion Papers of DIW Berlin 1856, DIW Berlin, German Institute for Economic Research.
    13. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    14. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    15. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    16. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    17. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    18. van den Broek, Tijs & van Veenstra, Anne Fleur, 2018. "Governance of big data collaborations: How to balance regulatory compliance and disruptive innovation," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 330-338.
    19. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    20. Nicolli, Francesco & Vona, Francesco, 2012. "The Evolution of Renewable Energy Policy in OECD Countries: Aggregate Indicators and Determinants," Climate Change and Sustainable Development 130897, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7400-:d:673337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.