IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7893-d1293254.html
   My bibliography  Save this article

Passive Mixing and Convective Heat Transfer Enhancement for Nanofluid Flow across Corrugated Base Microchannels

Author

Listed:
  • Ali Ammar Naqvi

    (Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA)

  • Emad Uddin

    (Computational Mechanics Group, Department of Mechanical Engineering, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology, Islamabad 44000, Pakistan)

  • Muhammad Zia Ullah Khan

    (School of Computation, Information and Technology, Technical University Munich, 80333 München, Germany)

Abstract

Vortex generators and pin fins are conventionally used to deliver fluid mixing and improved convective heat transfer. The increased pressure loss following a fractional increase in heat transfer, as well as the complex manufacturing design, leave room for improvement. The present work proposes a novel diverging–converging base corrugation model coupled with vortex generation using simple geometrical modifications across rectangular microchannels to ensure a superior performance. The Nusselt number, friction factor, and flow phenomenon were numerically studied across a Reynolds number range of 50–1000. The optimum cross-section of the microchannel-generating vortices was determined after thorough study, and base corrugation was further added to improve heat transfer. For the vortex–corrugation modeling, the heat transfer enhancement was verified in two optimized cases: (1) curved corrugated model, (2) interacting corrugated model. In the first case, an optimized curve generating Dean vortices was coupled with base corrugation. An overall increase in the Nusselt number of up to 32.69% and the thermal performance of “1.285 TPF” were observed at a high Reynolds number. The interacting channels with connecting bridges of varying width were found to generate vortices in the counter-flow configuration. The thermal performance of “1.25 TPF” was almost identical to the curved corrugated model; however, a major decrease in pressure, with a loss of 26.88%, was observed for this configuration.

Suggested Citation

  • Ali Ammar Naqvi & Emad Uddin & Muhammad Zia Ullah Khan, 2023. "Passive Mixing and Convective Heat Transfer Enhancement for Nanofluid Flow across Corrugated Base Microchannels," Energies, MDPI, vol. 16(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7893-:d:1293254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingnan Li & Li Yang, 2023. "Recent Development of Heat Sink and Related Design Methods," Energies, MDPI, vol. 16(20), pages 1-23, October.
    2. Jéssica Martha Nunes & Jeferson Diehl de Oliveira & Jacqueline Biancon Copetti & Sameer Sheshrao Gajghate & Utsab Banerjee & Sushanta K. Mitra & Elaine Maria Cardoso, 2023. "Thermal Performance Analysis of Micro Pin Fin Heat Sinks under Different Flow Conditions," Energies, MDPI, vol. 16(7), pages 1-13, March.
    3. Ebrahimi, Amin & Rikhtegar, Farhad & Sabaghan, Amin & Roohi, Ehsan, 2016. "Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids," Energy, Elsevier, vol. 101(C), pages 190-201.
    4. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    2. Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
    3. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    4. Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
    5. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    6. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    7. Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
    8. Lahoucine Ouhsaine & Mohammed El Ganaoui & Abdelaziz Mimet & Jean-Michel Nunzi, 2021. "A Substitutive Coefficients Network for the Modelling of Thermal Systems: A Mono-Zone Building Case Study," Energies, MDPI, vol. 14(9), pages 1-19, April.
    9. Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
    10. Keklikcioglu, Orhan & Ozceyhan, Veysel, 2017. "Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts," Energy, Elsevier, vol. 139(C), pages 65-75.
    11. Cristina Ramos Cáceres & Suzanna Törnroth & Mattias Vesterlund & Andreas Johansson & Marcus Sandberg, 2022. "Data-Center Farming: Exploring the Potential of Industrial Symbiosis in a Subarctic Region," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    12. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    13. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    14. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    15. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    16. Wang, Xinyue & Liu, Yang & Tian, Tong & Li, Ji, 2022. "Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness," Applied Energy, Elsevier, vol. 319(C).
    17. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    18. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    19. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    20. Saadah Ahmad & Shahrir Abdullah & Kamaruzzaman Sopian, 2020. "Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al 2 O 3 /Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape," Energies, MDPI, vol. 13(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7893-:d:1293254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.