IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp2129-2139.html
   My bibliography  Save this article

Thermal performance analysis of flat heat pipe with graded mini-grooves wick

Author

Listed:
  • Xin, Fei
  • Ma, Ting
  • Wang, Qiuwang

Abstract

Thermal management of micro electronic devices is one of the major issues for electronics application. Mini-grooves flat heat pipe is suitable to be used for small space electronics rapid cooling due to its high thermal conductivity, simple structure and good temperature uniformity. In this paper, an axial fluid flow and heat transfer mathematical model of mini-grooves flat heat pipe in steady state is built to study the axial distributions of key parameters such as pressure, velocity and wall temperature. As the wick structure plays an important role in the mini-grooves flat heat pipe heat transfer enhancement, the influence of mini-grooves size and wall with grooves along the axial direction on the heat transfer coefficient of mini-grooves flat heat pipe is studied. It is found that aiming at designing the optimum mini-grooves flat heat pipe, the local wick needs to be close to in saturated state, and the vapor chamber needs to be large. In this way, a novel graded-grooves wick design is put forward for flat heat pipe, which can increase the effective thermal conductivity coefficient by 12.4% with heat transfer rate 5.0 W. And the grooves wick in slope type with simple fabrication accords with practical application.

Suggested Citation

  • Xin, Fei & Ma, Ting & Wang, Qiuwang, 2018. "Thermal performance analysis of flat heat pipe with graded mini-grooves wick," Applied Energy, Elsevier, vol. 228(C), pages 2129-2139.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2129-2139
    DOI: 10.1016/j.apenergy.2018.07.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.07.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Jian & Wang, Qian, 2013. "Experimental study on the thermal performance of vertical closed-loop oscillating heat pipes and correlation modeling," Applied Energy, Elsevier, vol. 112(C), pages 1154-1160.
    2. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    3. Nithyanandam, K. & Pitchumani, R., 2014. "Design of a latent thermal energy storage system with embedded heat pipes," Applied Energy, Elsevier, vol. 126(C), pages 266-280.
    4. Marcinichen, Jackson Braz & Olivier, Jonathan A. & Oliveira, Vinicius de & Thome, John R., 2012. "A review of on-chip micro-evaporation: Experimental evaluation of liquid pumping and vapor compression driven cooling systems and control," Applied Energy, Elsevier, vol. 92(C), pages 147-161.
    5. Deng, Yuechao & Wang, Wei & Zhao, Yaohua & Yao, Liang & Wang, Xinyue, 2013. "Experimental study of the performance for a novel kind of MHPA-FPC solar water heater," Applied Energy, Elsevier, vol. 112(C), pages 719-726.
    6. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    7. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    8. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Gong & Fan, Dongqiang & Zhang, Shiwei & Sun, Yalong & Zhong, Guisheng & Wang, Zhiwei & Wan, Zhenpin & Tang, Yong, 2021. "Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices," Renewable Energy, Elsevier, vol. 163(C), pages 921-929.
    2. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    3. Xiang Gou & Qiyan Zhang & Yamei Li & Yingfan Liu & Shian Liu & Saima Iram, 2018. "Experimental Research on the Thermal Performance and Semi-Visualization of Rectangular Flat Micro-Grooved Gravity Heat Pipes," Energies, MDPI, vol. 11(9), pages 1-12, September.
    4. Qin, Siyu & Ji, Ruiyang & Miao, Chengyu & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2024. "Review of enhancing boiling and condensation heat transfer: Surface modification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Chander Shekhar & Tiwari, Manish K. & Zimmermann, Severin & Brunschwiler, Thomas & Schlottig, Gerd & Michel, Bruno & Poulikakos, Dimos, 2015. "Energy efficient hotspot-targeted embedded liquid cooling of electronics," Applied Energy, Elsevier, vol. 138(C), pages 414-422.
    2. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    3. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    4. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    5. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    6. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    7. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    8. Hales, Alastair & Jiang, Xi, 2018. "A review of piezoelectric fans for low energy cooling of power electronics," Applied Energy, Elsevier, vol. 215(C), pages 321-337.
    9. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    10. Zhang, Zhiguo & Zhao, Dan & Ni, Siliang & Sun, Yuze & Wang, Bing & Chen, Yong & Li, Guoneng & Li, S., 2019. "Experimental characterizing combustion emissions and thermodynamic properties of a thermoacoustic swirl combustor," Applied Energy, Elsevier, vol. 235(C), pages 463-472.
    11. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    12. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    13. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    14. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    15. Hosain, Md Lokman & Bel Fdhila, Rebei & Daneryd, Anders, 2016. "Heat transfer by liquid jets impinging on a hot flat surface," Applied Energy, Elsevier, vol. 164(C), pages 934-943.
    16. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    17. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    18. Pei, Wansheng & Zhang, Mingyi & Li, Shuangyang & Lai, Yuanming & Dong, Yuanhong & Jin, Long, 2019. "Laboratory investigation of the efficiency optimization of an inclined two-phase closed thermosyphon in ambient cool energy utilization," Renewable Energy, Elsevier, vol. 133(C), pages 1178-1187.
    19. Li, Peisheng & Li, Zhihao & Zhang, Ying & Li, Wenbin & Chen, Yue & Lei, Jie, 2020. "Numerical research on performance comparison of multi-layer high temperature latent heat storage under different structure parameter," Renewable Energy, Elsevier, vol. 156(C), pages 131-141.
    20. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:2129-2139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.