Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.01.102
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hussein, Adnan M. & Sharma, K.V. & Bakar, R.A. & Kadirgama, K., 2014. "A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 734-743.
- Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
- Ahmed, H.E. & Mohammed, H.A. & Yusoff, M.Z., 2012. "An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5951-5993.
- Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
- Amin Ebrahimi & Ehsan Roohi, 2015. "Numerical study of flow patterns and heat transfer in mini twisted oval tubes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(12), pages 1-18.
- Sarkar, Jahar, 2011. "A critical review on convective heat transfer correlations of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3271-3277, August.
- Mohammed Adham, Ahmed & Mohd-Ghazali, Normah & Ahmad, Robiah, 2013. "Thermal and hydrodynamic analysis of microchannel heat sinks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 614-622.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hilo, Ali Kareem & Abu Talib, Abd Rahim & Acosta Iborra, Antonio & Hameed Sultan, Mohammed Thariq & Abdul Hamid, Mohd Faisal, 2020. "Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer," Energy, Elsevier, vol. 190(C).
- Junjie Zhao & Bin Zhang & Xiaoli Fu & Shenglin Yan, 2021. "Numerical Study on the Influence of Vortex Generator Arrangement on Heat Transfer Enhancement of Oil-Cooled Motor," Energies, MDPI, vol. 14(21), pages 1-17, October.
- Doaa Rizk & Asad Ullah & Ikramullah & Samia Elattar & Khalid Abdulkhaliq M. Alharbi & Mohammad Sohail & Rajwali Khan & Alamzeb Khan & Nabil Mlaiki, 2022. "Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ZnO+Water) Flow through Permeable Vertically Rotating Surface," Energies, MDPI, vol. 15(8), pages 1-16, April.
- Martin O. L. Hansen & Antonis Charalampous & Jean-Marc Foucaut & Christophe Cuvier & Clara M. Velte, 2019. "Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator," Energies, MDPI, vol. 12(14), pages 1-14, July.
- Syafiq Zainodin & Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2022. "MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
- Saadah Ahmad & Shahrir Abdullah & Kamaruzzaman Sopian, 2020. "Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al 2 O 3 /Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape," Energies, MDPI, vol. 13(8), pages 1-24, April.
- Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
- Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
- Khan, M. Ijaz & Alzahrani, Faris, 2021. "Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 47-61.
- Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
- Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
- Ali Ammar Naqvi & Emad Uddin & Muhammad Zia Ullah Khan, 2023. "Passive Mixing and Convective Heat Transfer Enhancement for Nanofluid Flow across Corrugated Base Microchannels," Energies, MDPI, vol. 16(23), pages 1-23, December.
- Zuoqin Qian & Qiang Wang & Song Lv, 2020. "Research on the Thermal Hydraulic Performance and Entropy Generation Characteristics of Finned Tube Heat Exchanger with Streamline Tube," Energies, MDPI, vol. 13(20), pages 1-28, October.
- Keklikcioglu, Orhan & Ozceyhan, Veysel, 2017. "Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts," Energy, Elsevier, vol. 139(C), pages 65-75.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Wang, Jin & Yu, Kai & Ye, Mingzheng & Wang, Enyu & Wang, Wei & Sundén, Bengt, 2022. "Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids," Energy, Elsevier, vol. 239(PE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
- Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
- Minea, Alina Adriana, 2017. "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 426-434.
- Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
- Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
- Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
- Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.
- Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
- Sharma, Anuj Kumar & Tiwari, Arun Kumar & Dixit, Amit Rai, 2016. "Rheological behaviour of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 779-791.
- Ahmad, S.H.A. & Saidur, R. & Mahbubul, I.M. & Al-Sulaiman, F.A., 2017. "Optical properties of various nanofluids used in solar collector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1014-1030.
- Islam, M.R. & Shabani, B. & Rosengarten, G. & Andrews, J., 2015. "The potential of using nanofluids in PEM fuel cell cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 523-539.
- Sheikh, Nadeem Ahmad & Ali, Farhad & Khan, Ilyas & Gohar, Madeha, 2018. "A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 135-142.
- Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
- Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
- Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
- Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
- Taghizadeh-Tabari, Zohre & Zeinali Heris, Saeed & Moradi, Maryam & Kahani, Mostafa, 2016. "The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1318-1326.
- Mushtaq T. Al-Asadi & Hussein A. Mohammed & Mark C. T. Wilson, 2022. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review," Energies, MDPI, vol. 15(3), pages 1-34, February.
More about this item
Keywords
Microchannel; Longitudinal vortex generators; Nanofluids; Fluid flow; Heat transfer; Entropy generation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:101:y:2016:i:c:p:190-201. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.