IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922007942.html
   My bibliography  Save this article

A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations

Author

Listed:
  • Ye, Guisen
  • Gao, Feng
  • Fang, Jingyang

Abstract

Recent years witness a rapid increasing of data center energy consumption, among which the power losses of uninterruptible power supply (UPS) and server dominate. This paper proposes a mission-driven two-step virtual machine (VM) commitment by considering the characteristics of UPS power losses in virtual machine allocation. To formulate the optimization problem, a power model of data center is built by combining server power with power losses of rack level UPSs. Further, a two-step virtual machine allocation method is proposed, in which the best fit decreasing algorithm first groups the VMs and then the genetic algorithm searches for the optimal allocation of servers equipped with the grouped VMs. A data center with 100 servers and 100 VMs is simulated using the public data collected from PlanetLab platform. Results have verified that the total power consumption is reduced by up to 2.47%. In parallel, possible combinations need to be searched decrease by 3.35 × 10182 times in the VM allocation problem in the case with 100 servers and 100 VMs.

Suggested Citation

  • Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007942
    DOI: 10.1016/j.apenergy.2022.119467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922007942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alaperä, Ilari & Honkapuro, Samuli & Paananen, Janne, 2018. "Data centers as a source of dynamic flexibility in smart girds," Applied Energy, Elsevier, vol. 229(C), pages 69-79.
    2. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    3. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    4. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    5. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    6. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Cheung, Howard & Wang, Shengwei & Zhuang, Chaoqun & Gu, Jiefan, 2018. "A simplified power consumption model of information technology (IT) equipment in data centers for energy system real-time dynamic simulation," Applied Energy, Elsevier, vol. 222(C), pages 329-342.
    8. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    9. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    10. Kwon, Soongeol, 2020. "Ensuring renewable energy utilization with quality of service guarantee for energy-efficient data center operations," Applied Energy, Elsevier, vol. 276(C).
    11. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang & Zhang, Rui, 2021. "Integrated planning of internet data centers and battery energy storage systems in smart grids," Applied Energy, Elsevier, vol. 281(C).
    12. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    13. Yang, Ting & Zhao, Yingjie & Pen, Haibo & Wang, Zhaoxia, 2018. "Data center holistic demand response algorithm to smooth microgrid tie-line power fluctuation," Applied Energy, Elsevier, vol. 231(C), pages 277-287.
    14. Muhammad Aamir & Wajahat Ullah Tareen & Kafeel Ahmed Kalwar & Mudasir Ahmed Memon & Saad Mekhilef, 2017. "A High-Frequency Isolated Online Uninterruptible Power Supply (UPS) System with Small Battery Bank for Low Power Applications," Energies, MDPI, vol. 10(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wenyu & Yan, Yuejun & Sun, Yimeng & Mao, Hongju & Cheng, Ming & Wang, Peng & Ding, Zhaohao, 2023. "Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective," Applied Energy, Elsevier, vol. 338(C).
    2. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Sirui & Li, Peng & Ji, Haoran & Yu, Hao & Yan, Jinyue & Wu, Jianzhong & Wang, Chengshan, 2021. "Operational flexibility of active distribution networks with the potential from data centers," Applied Energy, Elsevier, vol. 293(C).
    2. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    3. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    4. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    5. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    6. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    7. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    8. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    9. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    10. Ji, Haoran & Chen, Sirui & Yu, Hao & Li, Peng & Yan, Jinyue & Song, Jieying & Wang, Chengshan, 2022. "Robust operation for minimizing power consumption of data centers with flexible substation integration," Energy, Elsevier, vol. 248(C).
    11. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).
    12. Liu, Xiaoou, 2024. "Research on collaborative scheduling of internet data center and regional integrated energy system based on electricity-heat-water coupling," Energy, Elsevier, vol. 292(C).
    13. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    14. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    15. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    16. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    17. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    18. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    19. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Cao, Yujie & Cao, Fang & Wang, Yajing & Wang, Jianxiao & Wu, Lei & Ding, Zhaohao, 2024. "Managing data center cluster as non-wire alternative: A case in balancing market," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922007942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.