IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026780.html
   My bibliography  Save this article

A simulation method for the dissolution construction of salt cavern energy storage with the interface angle considered

Author

Listed:
  • Ling, Daosheng
  • Zhu, Song
  • Zheng, Jianjing
  • Xu, Zijun
  • Zhao, Yunsong
  • Chen, Liuping
  • Shi, Xilin
  • Li, Jinlong

Abstract

The solution mining of a salt cavern for energy storage is highly affected by the interface angle, especially in a horizontal cavern, which has drawn much attention recently. Current empirical models assume the dissolution rates at different angles relate to that of a vertical interface. At the same time, the actual salt cavern design practice has found different conclusions. In this paper, a coupled convection-mass transfer model of rock salt dissolution is developed employing COMSOL software, and the dissolution of salt surfaces with 9 different angles is simulated. In the simulation, the quantitative dissolution rates are consistent with the indoor tests in the literature. The interface angle indirectly influences the dissolution rate through the flow pattern and rate. With larger interface angles, the gravity-driven natural convection gets more intense (no flow at 0°, stream at 45°, waterfall at 90°, raindrop mixing with stream above 90°, totally raindrop at 180°), which means the mass transfer near the boundary gets faster. Thus, the concentration near the boundary decreases, the concentration gradient increases, and the dissolution rate increases. Accordingly, we believe that the angle effect on the dissolution rate is not fixed, possibly being affected by other dissolution convection or the injection-discharge flow cycle. Take the ratio of the upward dissolution rate (α = 180°) and the lateral dissolution rate (α = 90°) (R) as an example, in the previous individual simulations, R is 2. While in the cases of simultaneous upward and lateral dissolution simulation & experiments, the lateral dissolution is accelerated by the global convection flow driven by the upward dissolution, and R is 1.5 & 1.6. In the case of simultaneous multi-angle dissolution, R is 1.3. Therefore, we suggest using the proposed simulation method to help determine the actual dissolution rate in different stages during the design for actual engineering.

Suggested Citation

  • Ling, Daosheng & Zhu, Song & Zheng, Jianjing & Xu, Zijun & Zhao, Yunsong & Chen, Liuping & Shi, Xilin & Li, Jinlong, 2023. "A simulation method for the dissolution construction of salt cavern energy storage with the interface angle considered," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026780
    DOI: 10.1016/j.energy.2022.125792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soubeyran, A. & Rouabhi, A. & Coquelet, C., 2019. "Thermodynamic analysis of carbon dioxide storage in salt caverns to improve the Power-to-Gas process," Applied Energy, Elsevier, vol. 242(C), pages 1090-1107.
    2. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    3. Wang, Tongtao & Yang, Chunhe & Wang, Huimeng & Ding, Shuanglong & Daemen, J.J.K., 2018. "Debrining prediction of a salt cavern used for compressed air energy storage," Energy, Elsevier, vol. 147(C), pages 464-476.
    4. Liu, Wei & Zhang, Zhixin & Chen, Jie & Fan, Jinyang & Jiang, Deyi & Jjk, Daemen & Li, Yinping, 2019. "Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens," Energy, Elsevier, vol. 185(C), pages 682-694.
    5. Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
    6. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    7. Liu, Wei & Jiang, Deyi & Chen, Jie & Daemen, J.J.K. & Tang, Kang & Wu, Fei, 2018. "Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in China," Energy, Elsevier, vol. 143(C), pages 1006-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Youqiang & Wang, Tongtao & Ren, Zhongxin & Wang, Duocai & Sun, Wei & Sun, Peng & Li, Jingcui & Zou, Xianjian, 2024. "Multi-well combined solution mining for salt cavern energy storages and its displacement optimization," Energy, Elsevier, vol. 288(C).
    2. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinlong & Zhang, Ning & Xu, Wenjie & Naumov, Dmitri & Fischer, Thomas & Chen, Yunmin & Zhuang, Duanyang & Nagel, Thomas, 2022. "The influence of cavern length on deformation and barrier integrity around horizontal energy storage salt caverns," Energy, Elsevier, vol. 244(PB).
    2. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    3. Li, Jinlong & Wang, ZhuoTeng & Zhang, Shuai & Shi, Xilin & Xu, Wenjie & Zhuang, Duanyang & Liu, Jia & Li, Qingdong & Chen, Yunmin, 2022. "Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns," Energy, Elsevier, vol. 254(PA).
    4. Li, Jinlong & Shi, Xilin & Zhang, Shuai, 2020. "Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns," Energy, Elsevier, vol. 203(C).
    5. Zhang, Xiong & Liu, Wei & Chen, Jie & Jiang, Deyi & Fan, Jinyang & Daemen, J.J.K. & Qiao, Weibiao, 2022. "Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability," Energy, Elsevier, vol. 249(C).
    6. Huiyong Song & Song Zhu & Jinlong Li & Zhuoteng Wang & Qingdong Li & Zexu Ning, 2023. "Design Criteria for the Construction of Energy Storage Salt Cavern Considering Economic Benefits and Resource Utilization," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    7. Liu, Wei & Zhang, Zhixin & Chen, Jie & Fan, Jinyang & Jiang, Deyi & Jjk, Daemen & Li, Yinping, 2019. "Physical simulation of construction and control of two butted-well horizontal cavern energy storage using large molded rock salt specimens," Energy, Elsevier, vol. 185(C), pages 682-694.
    8. Jinlong, Li & Wenjie, Xu & Jianjing, Zheng & Wei, Liu & Xilin, Shi & Chunhe, Yang, 2020. "Modeling the mining of energy storage salt caverns using a structural dynamic mesh," Energy, Elsevier, vol. 193(C).
    9. Xue, Tianfu & Shi, Xilin & Wang, Guibin & Liu, Xin & Wei, Xinxing & Ding, Shuanglong & Fu, Xinghui, 2024. "Study on repairing technical parameters of irregular gas storage salt caverns," Energy, Elsevier, vol. 293(C).
    10. Liang, Xiaopeng & Ma, Hongling & Cai, Rui & Zhao, Kai & Zeng, Zhen & Li, Hang & Yang, Chunhe, 2023. "Feasibility analysis of natural gas storage in the voids of sediment within salt cavern——A case study in China," Energy, Elsevier, vol. 285(C).
    11. Li, Hang & Ma, Hongling & Liu, Jiang & Zhu, Shijie & Zhao, Kai & Zheng, Zhuyan & Zeng, Zhen & Yang, Chunhe, 2023. "Large-scale CAES in bedded rock salt: A case study in Jiangsu Province, China," Energy, Elsevier, vol. 281(C).
    12. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    13. Jingcui Li & Jifang Wan & Hangming Liu & Maria Jose Jurado & Yuxian He & Guangjie Yuan & Yan Xia, 2022. "Stability Analysis of a Typical Salt Cavern Gas Storage in the Jintan Area of China," Energies, MDPI, vol. 15(11), pages 1-15, June.
    14. He, Tao & Wang, Tongtao & Wang, Duocai & Xie, Dongzhou & Dong, Zhikai & Zhang, Hong & Ma, Tieliang & Daemen, J.J.K., 2023. "Integrity analysis of wellbores in the bedded salt cavern for energy storage," Energy, Elsevier, vol. 263(PB).
    15. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).
    16. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    17. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    18. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
    19. Lyu, Cheng & Dai, Hangyu & Ma, Chao & Zhou, Ping & Zhao, Chengxing & Xu, Deng & Zhang, Liangquan & Liang, Chao, 2024. "Prediction model for three-dimensional surface subsidence of salt cavern storage with different shapes," Energy, Elsevier, vol. 297(C).
    20. Wang, Junbao & Wang, Xiaopeng & Zhang, Qiang & Song, Zhanping & Zhang, Yuwei, 2021. "Dynamic prediction model for surface settlement of horizontal salt rock energy storage," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.