IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7607-d1281544.html
   My bibliography  Save this article

An Ejector and Flashbox-Integrated Approach to Flue Gas Waste Heat Recovery: A Novel Systematic Study

Author

Listed:
  • Runchen Wang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Xiaonan Du

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Yuetao Shi

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Yuhao Wang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Fengzhong Sun

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

Abstract

In this study, a comprehensive examination was conducted to explore the technology involved in the recovery of waste heat from flue gas emitted by a 1000 MW unit. Traditional methods are constrained in their ability to harness waste heat from flue gas solely for the purpose of generating medium-temperature water. The system being examined not only recovers waste heat but also utilizes it to generate steam, thereby greatly improving resource efficiency. The process entails utilizing the flue gas to heat water to a certain temperature, followed by subjecting it to flash evaporation. This process leads to the generation of low-pressure waste heat steam. Within the steam ejector, the waste heat steam combines with high-pressure motive steam extracted from the source, resulting in the formation of medium-pressure steam. Within the steam ejector, the waste heat steam blends with high-pressure motive steam drawn from the source, forming medium-pressure steam that eventually feeds into the A8 steam extraction pipe (low-pressure turbine pumping pipe). The present study examines the fluctuation patterns in motive steam flow, suction coefficient, waste heat steam volume, and outlet temperature of the flue water heat exchanger when different motive steam sources are used. Additionally, the research calculates the reduction in CO 2 emissions, the coal consumption for power supply, and the cost savings in fuel for the retrofitted system. The findings indicate that maximizing energy utilization can be achieved by operating the retrofitted unit at the lowest feasible waste heat steam pressure. The implementation of the new system has resulted in a substantial decrease in coal consumption for power supply. When employing main steam as the extraction steam source, the consumption of coal for power generation decreases in proportion to the decrease in waste heat steam pressure while maintaining a constant unit load. When the waste heat steam pressure reaches 0.0312 MPa, the recorded coal consumption for power generation varies between 289.43 g/kWh at 100% turbine heat acceptance (THA) and 326.94 g/kWh at 30%THA. When comparing this performance with the initial thermal power plant (TPP) unit, it demonstrates reductions of 2.26 g/kWh and 1.52 g/kWh, respectively. After implementing modifications to this 1000 MW unit, it is projected that the annual CO 2 emissions can be effectively reduced by 6333.97 tons, resulting in significant cost savings of approximately USD 0.23 million in fuel expenses. This system exhibits considerable potential in terms of emission reduction and provides valuable insights for thermal power plants aiming to decrease unit energy consumption.

Suggested Citation

  • Runchen Wang & Xiaonan Du & Yuetao Shi & Yuhao Wang & Fengzhong Sun, 2023. "An Ejector and Flashbox-Integrated Approach to Flue Gas Waste Heat Recovery: A Novel Systematic Study," Energies, MDPI, vol. 16(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7607-:d:1281544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chae, Song Hwa & Kim, Sang Hun & Yoon, Sung-Geun & Park, Sunwon, 2010. "Optimization of a waste heat utilization network in an eco-industrial park," Applied Energy, Elsevier, vol. 87(6), pages 1978-1988, June.
    2. Smolen, S. & Budnik-Rodz, M., 2006. "Low rate energy use for heating and in industrial energy supply systems—Some technical and economical aspects," Energy, Elsevier, vol. 31(14), pages 2588-2603.
    3. Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
    4. Le Zhang & Huixing Zhai & Jiayuan He & Fan Yang & Suilin Wang, 2022. "Application of Exergy Analysis in Flue Gas Condensation Waste Heat Recovery System Evaluation," Energies, MDPI, vol. 15(20), pages 1-12, October.
    5. Xu, Z.Y. & Mao, H.C. & Liu, D.S. & Wang, R.Z., 2018. "Waste heat recovery of power plant with large scale serial absorption heat pumps," Energy, Elsevier, vol. 165(PB), pages 1097-1105.
    6. Zhang, Jianhua & Zhou, Yeli & Li, Ying & Hou, Guolian & Fang, Fang, 2013. "Generalized predictive control applied in waste heat recovery power plants," Applied Energy, Elsevier, vol. 102(C), pages 320-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Jussi Saari & Ekaterina Sermyagina & Juha Kaikko & Markus Haider & Marcelo Hamaguchi & Esa Vakkilainen, 2021. "Evaluation of the Energy Efficiency Improvement Potential through Back-End Heat Recovery in the Kraft Recovery Boiler," Energies, MDPI, vol. 14(6), pages 1-21, March.
    3. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    4. Hou, Guolian & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2020. "Fuzzy modeling and fast model predictive control of gas turbine system," Energy, Elsevier, vol. 200(C).
    5. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    6. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    7. Oluleye, Gbemi & Jobson, Megan & Smith, Robin, 2015. "A hierarchical approach for evaluating and selecting waste heat utilization opportunities," Energy, Elsevier, vol. 90(P1), pages 5-23.
    8. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    9. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    10. Wu, Xialai & Chen, Junghui & Xie, Lei, 2019. "Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies," Energy, Elsevier, vol. 180(C), pages 520-534.
    11. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    12. Han, Jee-Hoon & Lee, In-Beum, 2014. "A systematic process integration framework for the optimal design and techno-economic performance analysis of energy supply and CO2 mitigation strategies," Applied Energy, Elsevier, vol. 125(C), pages 136-146.
    13. Han, Yu & Sun, Yingying & Wu, Junjie, 2023. "A novel solar-driven waste heat recovery system in solar-fuel hybrid power plants," Energy, Elsevier, vol. 285(C).
    14. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    15. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    16. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
    17. Mahmoud Khaled & Mostafa Mortada & Jalal Faraj & Khaled Chahine & Thierry Lemenand & Haitham S. Ramadan, 2022. "Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis," Energies, MDPI, vol. 15(21), pages 1-14, October.
    18. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    19. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).
    20. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7607-:d:1281544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.