IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp520-534.html
   My bibliography  Save this article

Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies

Author

Listed:
  • Wu, Xialai
  • Chen, Junghui
  • Xie, Lei

Abstract

Effective control for Organic Rankine Cycle (ORC) systems is required to ensure safety of each component and attain satisfactory performance in spite of the waste heat sources varying in a broad range. To maximally recover the waste heat and to handle the multivariate constraints during the ORC transient operation, in this paper an economic nonlinear model predictive controller (EMPC) using the net power output as an objective is designed. To fast obtain a solution of EMPC in practical applications, the computation of the gradient of the EMPC objective is simplified and the quasi-sequential method is employed for the online dynamic optimization of EMPC. Unlike the conventional nonlinear model predictive control (MPC) scheme, the results in a case study show that the proposed EMPC can quickly improve the net power output of the ORC system during the operation while still satisfying the load tracking requirements.

Suggested Citation

  • Wu, Xialai & Chen, Junghui & Xie, Lei, 2019. "Fast economic nonlinear model predictive control strategy of Organic Rankine Cycle for waste heat recovery: Simulation-based studies," Energy, Elsevier, vol. 180(C), pages 520-534.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:520-534
    DOI: 10.1016/j.energy.2019.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    2. Pierobon, Leonardo & Casati, Emiliano & Casella, Francesco & Haglind, Fredrik & Colonna, Piero, 2014. "Design methodology for flexible energy conversion systems accounting for dynamic performance," Energy, Elsevier, vol. 68(C), pages 667-679.
    3. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    4. Zhang, Jianhua & Zhou, Yeli & Wang, Rui & Xu, Jinliang & Fang, Fang, 2014. "Modeling and constrained multivariable predictive control for ORC (Organic Rankine Cycle) based waste heat energy conversion systems," Energy, Elsevier, vol. 66(C), pages 128-138.
    5. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    6. Quoilin, Sylvain & Aumann, Richard & Grill, Andreas & Schuster, Andreas & Lemort, Vincent & Spliethoff, Hartmut, 2011. "Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles," Applied Energy, Elsevier, vol. 88(6), pages 2183-2190, June.
    7. Zhang, Jianhua & Lin, Mingming & Fang, Fang & Xu, Jinliang & Li, Kang, 2016. "Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model," Energy, Elsevier, vol. 107(C), pages 773-783.
    8. Andres Hernandez & Adriano Desideri & Clara Ionescu & Robin De Keyser & Vincent Lemort & Sylvain Quoilin, 2016. "Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control," Energies, MDPI, vol. 9(5), pages 1-18, May.
    9. Jianhua Zhang & Jiancun Feng & Yeli Zhou & Fang Fang & Hong Yue, 2012. "Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles," Energies, MDPI, vol. 5(12), pages 1-15, December.
    10. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    11. Zhang, Jianhua & Zhou, Yeli & Li, Ying & Hou, Guolian & Fang, Fang, 2013. "Generalized predictive control applied in waste heat recovery power plants," Applied Energy, Elsevier, vol. 102(C), pages 320-326.
    12. Shi, Rongqi & He, Tianqi & Peng, Jie & Zhang, Yangjun & Zhuge, Weilin, 2016. "System design and control for waste heat recovery of automotive engines based on Organic Rankine Cycle," Energy, Elsevier, vol. 102(C), pages 276-286.
    13. Hærvig, J. & Sørensen, K. & Condra, T.J., 2016. "Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery," Energy, Elsevier, vol. 96(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    2. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    3. Shi, Yao & Lin, Runze & Wu, Xialai & Zhang, Zhiming & Sun, Pei & Xie, Lei & Su, Hongye, 2022. "Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system," Energy, Elsevier, vol. 244(PA).
    4. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
    5. Tailu Li & Zeyu Wang & Jingyi Wang & Xiang Gao, 2023. "Dynamic Performance of Organic Rankine Cycle Driven by Fluctuant Industrial Waste Heat for Building Power Supply," Energies, MDPI, vol. 16(2), pages 1-24, January.
    6. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).
    8. Wan, Xin & Xu, Feng & Luo, Xiong-Lin, 2022. "Economic optimization for process transition based on redundant control variables in the framework of zone model predictive control," Energy, Elsevier, vol. 241(C).
    9. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    10. Oravec, Juraj & Horváthová, Michaela & Bakošová, Monika, 2020. "Energy efficient convex-lifting-based robust control of a heat exchanger," Energy, Elsevier, vol. 201(C).
    11. Pili, R. & Eyerer, S. & Dawo, F. & Wieland, C. & Spliethoff, H., 2020. "Development of a non-linear state estimator for advanced control of an ORC test rig for geothermal application," Renewable Energy, Elsevier, vol. 161(C), pages 676-690.
    12. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    2. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    3. Jolevski, Danijel & Bego, Ozren & Sarajcev, Petar, 2017. "Control structure design and dynamics modelling of the organic Rankine cycle system," Energy, Elsevier, vol. 121(C), pages 193-204.
    4. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    6. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    7. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    8. Tailu Li & Zeyu Wang & Jingyi Wang & Xiang Gao, 2023. "Dynamic Performance of Organic Rankine Cycle Driven by Fluctuant Industrial Waste Heat for Building Power Supply," Energies, MDPI, vol. 16(2), pages 1-24, January.
    9. Zhang, Jianhua & Lin, Mingming & Fang, Fang & Xu, Jinliang & Li, Kang, 2016. "Gain scheduling control of waste heat energy conversion systems based on an LPV (linear parameter varying) model," Energy, Elsevier, vol. 107(C), pages 773-783.
    10. Hernandez, Andres & Desideri, Adriano & Gusev, Sergei & Ionescu, Clara M. & Den Broek, Martijn Van & Quoilin, Sylvain & Lemort, Vincent & De Keyser, Robin, 2017. "Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system," Applied Energy, Elsevier, vol. 203(C), pages 549-559.
    11. Ni, Jiaxin & Zhao, Li & Zhang, Zhengtao & Zhang, Ying & Zhang, Jianyuan & Deng, Shuai & Ma, Minglu, 2018. "Dynamic performance investigation of organic Rankine cycle driven by solar energy under cloudy condition," Energy, Elsevier, vol. 147(C), pages 122-141.
    12. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    13. Shi, Yao & Zhang, Zhiming & Xie, Lei & Wu, Xialai & Liu, Xueqin Amy & Lu, Shan & Su, Hongye, 2022. "Modified hierarchical strategy for transient performance improvement of the ORC based waste heat recovery system," Energy, Elsevier, vol. 261(PA).
    14. Shi, Yao & Lin, Runze & Wu, Xialai & Zhang, Zhiming & Sun, Pei & Xie, Lei & Su, Hongye, 2022. "Dual-mode fast DMC algorithm for the control of ORC based waste heat recovery system," Energy, Elsevier, vol. 244(PA).
    15. Zhang, Jianhua & Lin, Mingming & Chen, Junghui & Xu, Jinliang & Li, Kang, 2017. "PLS-based multi-loop robust H2 control for improvement of operating efficiency of waste heat energy conversion systems with organic Rankine cycle," Energy, Elsevier, vol. 123(C), pages 460-472.
    16. Lin, Shan & Zhao, Li & Deng, Shuai & Ni, Jiaxin & Zhang, Ying & Ma, Minglu, 2019. "Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine," Energy, Elsevier, vol. 169(C), pages 958-971.
    17. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    18. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    19. Shi, Yao & Zhang, Zhiming & Chen, Xiaoqiang & Xie, Lei & Liu, Xueqin & Su, Hongye, 2023. "Data-Driven model identification and efficient MPC via quasi-linear parameter varying representation for ORC waste heat recovery system," Energy, Elsevier, vol. 271(C).
    20. Ivan Korolija & Richard Greenough, 2016. "Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery," Energies, MDPI, vol. 9(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:520-534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.