IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4196-d1151059.html
   My bibliography  Save this article

Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT

Author

Listed:
  • Haitao Wang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Jianfeng Zhai

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract

In this article, we propose the endothermic screen model. The aim is to reduce the problems of the high temperature and low utilization of waste heat in industrial plants with high radiant heat. In this paper, the Rhino software is used to establish the model and import it into the FLUENT software, divide the mesh, set the boundary conditions and analyze the transient temperature field. Finally, the temperature change law in the plant and the waste heat recovery efficiency of the endothermic screen are obtained. The flow of cooling water in the endothermic screen is used to transform and transfer the high-radiation heat inside the plant to the outside. The simulation results show that after adding the endothermic screen, the average indoor temperature drops from 313.33 K to 305.66 K, which has a cooling effect. The waste heat recovery efficiency reaches up to 56%, and the waste heat recovery effect is obvious. The research results can provide a reference for the application of an endothermic screen in actual high radiant heat plants and provide a more comfortable working environment for the plant workers.

Suggested Citation

  • Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4196-:d:1151059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricia Royo & Luis Acevedo & Álvaro J. Arnal & Maryori Diaz-Ramírez & Tatiana García-Armingol & Victor J. Ferreira & Germán Ferreira & Ana M. López-Sabirón, 2021. "Decision Support System of Innovative High-Temperature Latent Heat Storage for Waste Heat Recovery in the Energy-Intensive Industry," Energies, MDPI, vol. 14(2), pages 1-13, January.
    2. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    3. Chen, Wei-Hsin & Chiou, Yi-Bin & Chein, Rei-Yu & Uan, Jun-Yen & Wang, Xiao-Dong, 2022. "Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat," Applied Energy, Elsevier, vol. 306(PA).
    4. Zhao, Zhiqi & Luo, Lei & Qiu, Dandan & Wang, Zhongqi & Sundén, Bengt, 2021. "On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runchen Wang & Xiaonan Du & Yuetao Shi & Yuhao Wang & Fengzhong Sun, 2023. "An Ejector and Flashbox-Integrated Approach to Flue Gas Waste Heat Recovery: A Novel Systematic Study," Energies, MDPI, vol. 16(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    2. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    3. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    4. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    5. Rawal Diganjit & Nagaranjan Gnanasekaran & Moghtada Mobedi, 2023. "Thermohydraulic Efficiency of a Solar Air Heater in the Presence of Graded Aluminium Wire Mesh—A Combined Experimental–Numerical Study," Energies, MDPI, vol. 16(15), pages 1-32, July.
    6. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    7. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    8. Xianliang Liu & Haodong Chen & Jianyi Huang & Kaiming Qiao & Ziyuan Yu & Longlong Xie & Raju V. Ramanujan & Fengxia Hu & Ke Chu & Yi Long & Hu Zhang, 2023. "High-performance thermomagnetic generator controlled by a magnetocaloric switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Luo, Ding & Zhang, Haokang & Cao, Jin & Yan, Yuyin & Cao, Bingyang, 2024. "Numerical investigation and optimization of a hexagonal thermoelectric generator with diverging fins for exhaust waste heat recovery," Energy, Elsevier, vol. 301(C).
    10. Jianke Hu & Kai Teng & Yida Qiu & Yuzhu Chen & Jun Wang & Peter Lund, 2022. "Thermodynamic and Economic Performance Assessment of Double-Effect Absorption Chiller Systems with Series and Parallel Connections," Energies, MDPI, vol. 15(23), pages 1-17, December.
    11. Maiorino, Angelo & Petruzziello, Fabio & Grilletto, Arcangelo & Aprea, Ciro, 2024. "Kinetic energy harvesting for enhancing sustainability of refrigerated transportation," Applied Energy, Elsevier, vol. 364(C).
    12. Cheng, Kunlin & Li, Jiahui & Yu, Jianchi & Fu, Chuanjie & Qin, Jiang & Jing, Wuxing, 2023. "Novel thermoelectric generator enhanced supercritical carbon dioxide closed-Brayton-cycle power generation systems: Performance comparison and configuration optimization," Energy, Elsevier, vol. 284(C).
    13. Ravanbakhsh, Mohammad & Gholizadeh, Mohammad & Rezapour, Mojtaba, 2023. "3E thermodynamic modeling and optimization a novel of ARS-CPVT with the effect of inserting a turbulator in the solar collector," Renewable Energy, Elsevier, vol. 209(C), pages 591-607.
    14. Maryori Díaz-Ramírez & Snorri Jokull & Claudio Zuffi & María Dolores Mainar-Toledo & Giampaolo Manfrida, 2023. "Environmental Assessment of Hellisheidi Geothermal Power Plant based on Exergy Allocation Factors for Heat and Electricity Production," Energies, MDPI, vol. 16(9), pages 1-17, April.
    15. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    17. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    18. Lin Chen & Yizhi Zhang & Karim Ragui & Chaofeng Hou & Jinguang Zang & Yanping Huang, 2023. "Molecular Dynamics Method for Supercritical CO 2 Heat Transfer: A Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    19. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    20. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4196-:d:1151059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.