IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4581-d845747.html
   My bibliography  Save this article

Numerical Simulations for Indirect and Direct Cooling of 54 V LiFePO 4 Battery Pack

Author

Listed:
  • Yulong Li

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Zhifu Zhou

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Laisuo Su

    (Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA)

  • Minli Bai

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Linsong Gao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yang Li

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Xuanyu Liu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yubai Li

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yongchen Song

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

In this study, three-dimensional thermal simulations for a 54 V Lithium-ion battery pack composed of 18 LiFePO 4 pouch battery cells connected in series were conducted using a multi-scale electrochemical-thermal-fluid model. An equivalent circuit model (ECM) is used as a subscale electrochemical model at each cell node of the battery, which is then combined with the macro-scale thermal and fluid equations to construct a model of the battery and battery pack. With the model, the cooling effects of indirect cooling and direct cooling battery thermal management systems (BTMS) on the battery pack under rapid discharging conditions are explored. It is found that when the battery pack is discharged at 2C, indirect cooling of the bottom plate can effectively dissipate heat and control the temperature of the battery pack. Under the 10C discharging condition, the maximum temperature of the battery pack will exceed 100 °C, and the temperature uniformity will be very poor when using indirect cooling of the bottom plate for the battery pack. Direct air cooling is also unable to meet the cooling requirements of the battery pack at a 10C discharging rate. The possible reason is that the convective heat transfer coefficient of direct air cooling is small, which makes it difficult to meet the heat dissipation requirements at the 10C condition. When single-phase direct cooling with fluorinated liquid is used, the maximum temperature of the battery pack under the 10C discharging condition can be controlled at about 65 °C. Compared with air direct cooling, the pressure drop of fluorinated liquid single-phase direct cooling is smaller, and the obtained battery pack temperature uniformity is better. From the detailed study of fluorinated liquid single-phase direct cooling, it is concluded that increasing the coolant flow rate and reducing the cell spacing in the battery pack can achieve a better cooling effect. Finally, a new cooling method, two-phase immersion cooling, is investigated for cooling the battery pack. The maximum temperature of the battery pack discharged at a 10C rate can be controlled below 35 °C, and good temperature uniformity of the battery pack is also achieved at the same time. This study focuses on fluorinated liquid immersion cooling using numerical simulations, showing that it is a promising cooling method for lithium-ion battery packs and deserves further study. This paper will provide a reference for the design and selection of BTMS for electric vehicles.

Suggested Citation

  • Yulong Li & Zhifu Zhou & Laisuo Su & Minli Bai & Linsong Gao & Yang Li & Xuanyu Liu & Yubai Li & Yongchen Song, 2022. "Numerical Simulations for Indirect and Direct Cooling of 54 V LiFePO 4 Battery Pack," Energies, MDPI, vol. 15(13), pages 1-30, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4581-:d:845747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    2. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    3. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    4. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    5. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    6. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    4. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    5. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    6. Qaderi, Alireza & Veysi, Farzad, 2022. "Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries," Energy, Elsevier, vol. 244(PA).
    7. Yijun Li & Stéphane Roux & Cathy Castelain & Yilin Fan & Lingai Luo, 2023. "Design and Optimization of Heat Sinks for the Liquid Cooling of Electronics with Multiple Heat Sources: A Literature Review," Energies, MDPI, vol. 16(22), pages 1-26, November.
    8. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    9. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    10. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    11. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. E, Jiaqiang & Yi, Feng & Li, Wenjie & Zhang, Bin & Zuo, Hongyan & Wei, Kexiang & Chen, Jingwei & Zhu, Hong & Zhu, Hao & Deng, Yuanwang, 2021. "Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China," Energy, Elsevier, vol. 226(C).
    14. Kaur, Inderjot & Singh, Prashant, 2023. "Progress in minichannel-based thermal management of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Faizan, Md & Pati, Sukumar & Randive, Pitambar, 2023. "Effect of channel configurations on the thermal management of fast discharging Li-ion battery module with hybrid cooling," Energy, Elsevier, vol. 267(C).
    16. Weng, Jingwen & Xiao, Changren & Yang, Xiaoqing & Ouyang, Dongxu & Chen, Mingyi & Zhang, Guoqing & Lee Waiming, Eric & Kit Yuen, Richard Kwowk & Wang, Jian, 2022. "An energy-saving battery thermal management strategy coupling tubular phase-change-material with dynamic liquid cooling under different ambient temperatures," Renewable Energy, Elsevier, vol. 195(C), pages 918-930.
    17. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
    18. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Yubai Li & Zhifu Zhou & Wei-Tao Wu, 2020. "Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery," Energies, MDPI, vol. 13(4), pages 1-16, February.
    20. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4581-:d:845747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.