IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7393-d1272380.html
   My bibliography  Save this article

Low-Cost Distributed Thermal Response Test for the Estimation of Thermal Ground and Grout Conductivities in Geothermal Heat Pump Applications

Author

Listed:
  • Antonella Priarone

    (Dime Department of Mechanical, Energy, Management and Transportation Engineering, The University of Genova, Via Opera Pia 15, 16145 Genova, Italy)

  • Stefano Morchio

    (Dime Department of Mechanical, Energy, Management and Transportation Engineering, The University of Genova, Via Opera Pia 15, 16145 Genova, Italy)

  • Marco Fossa

    (Dime Department of Mechanical, Energy, Management and Transportation Engineering, The University of Genova, Via Opera Pia 15, 16145 Genova, Italy)

  • Samuele Memme

    (Dime Department of Mechanical, Energy, Management and Transportation Engineering, The University of Genova, Via Opera Pia 15, 16145 Genova, Italy)

Abstract

The design process of a borehole heat exchanger (BHE) requires knowledge of building thermal loads, the expected heat pump’s COP and the ground’s thermophysical properties. The thermal response test (TRT) is a common experimental technique for estimating the ground’s thermal conductivity and borehole thermal resistance. In classic TRT, a constant heat transfer rate is provided above ground to the carrier fluid that circulates continuously inside a pilot BHE. The average fluid temperature is measured, and from its time-dependent evolution, it is possible to infer both the thermal resistance of the BHE and the thermal conductivity of the ground. The present paper investigates the possibility of a new approach for TRT with the continuous injection of heat directly into the BHE’s grouting by means of electrical resistance imparted along the entire BHE’s length, while local (along the depth) temperature measurements are acquired. This DTRT (distributed TRT) approach has seldom been applied and, in most applications, circulating hot fluid and optical fibers are used to infer depth-related temperatures. The distributed measurements allow the detection of thermal ground anomalies along the heat exchanger and even the presence of aquifer layers. The present paper investigates the new EDDTRT (electric depth-distributed TRT, under patenting) approach based on traditional instruments (e.g., RTD) or one-wire digital sensors. The accuracy of the proposed method is numerically assessed by Comsol Multiphysics simulations. The analysis of the data obtained from the “virtual” EDDTRT confirms the possibility of estimating within 10% accuracy both thermal ground and grout conductivities.

Suggested Citation

  • Antonella Priarone & Stefano Morchio & Marco Fossa & Samuele Memme, 2023. "Low-Cost Distributed Thermal Response Test for the Estimation of Thermal Ground and Grout Conductivities in Geothermal Heat Pump Applications," Energies, MDPI, vol. 16(21), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7393-:d:1272380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    2. Stefano Morchio & Marco Fossa & Antonella Priarone & Alessia Boccalatte, 2021. "Reduced Scale Experimental Modelling of Distributed Thermal Response Tests for the Estimation of the Ground Thermal Conductivity," Energies, MDPI, vol. 14(21), pages 1-15, October.
    3. Lamarche, Louis, 2013. "Short-term behavior of classical analytic solutions for the design of ground-source heat pumps," Renewable Energy, Elsevier, vol. 57(C), pages 171-180.
    4. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    5. Acuña, José & Palm, Björn, 2013. "Distributed thermal response tests on pipe-in-pipe borehole heat exchangers," Applied Energy, Elsevier, vol. 109(C), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
    3. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    4. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    5. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    6. Aizhao Zhou & Xianwen Huang & Wei Wang & Pengming Jiang & Xinwei Li, 2021. "Thermo-Hydraulic Performance of U-Tube Borehole Heat Exchanger with Different Cross-Sections," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    7. Choi, Wonjun & Ooka, Ryozo, 2015. "Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method," Applied Energy, Elsevier, vol. 148(C), pages 476-488.
    8. Pouria Abbasi & Masih Alavy & Pavel Belansky & Marc A. Rosen, 2024. "Assessment of Environmental Impacts of Thermal Caisson Geothermal Systems," Resources, MDPI, vol. 13(3), pages 1-22, March.
    9. Changlong Wang & Qiang Fu & Wanyu Sun & Jinli Lu & Yanhong Sun & Wanwan Li, 2023. "Estimation of Layered Ground Thermal Properties for Deep Coaxial Ground Heat Exchanger," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    10. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    11. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    12. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    13. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
    14. Cimmino, Massimo, 2016. "Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes," Renewable Energy, Elsevier, vol. 96(PA), pages 137-147.
    15. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    16. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    17. Luo, Yongqiang & Shen, Junhao & Song, Yixiao & Liu, Qingyuan & Huo, Fulei & Chu, Zhanpeng & Tian, Zhiyong & Fan, Jianhua & Zhang, Ling & Liu, Aihua, 2024. "Multi-segmented tube design and multi-objective optimization of deep coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 237(PA).
    18. Oleg Todorov & Kari Alanne & Markku Virtanen & Risto Kosonen, 2021. "Different Approaches for Evaluation and Modeling of the Effective Thermal Resistance of Groundwater-Filled Boreholes," Energies, MDPI, vol. 14(21), pages 1-25, October.
    19. Johan Claesson & Saqib Javed, 2020. "Explicit Multipole Formula for the Local Thermal Resistance in an Energy Pile—The Line-Source Approximation," Energies, MDPI, vol. 13(20), pages 1-24, October.
    20. Ikeda, Shintaro & Choi, Wonjun & Ooka, Ryozo, 2017. "Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature," Applied Energy, Elsevier, vol. 193(C), pages 466-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7393-:d:1272380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.