IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p2399-2408.html
   My bibliography  Save this article

Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger

Author

Listed:
  • Zhang, Changxing
  • Wang, Xinjie
  • Sun, Pengkun
  • Kong, Xiangqiang
  • Sun, Shicai

Abstract

Accurate estimates for ground thermal parameters and borehole thermal resistance are important to improve the design of borehole heat exchangers (BHEs) in ground-coupled heat pump systems(GCHPs). In order to improve the estimating accuracy of borehole thermal resistance, this paper presents a simple analytical method for evaluating the actual averaged –over-the –depth mean fluid temperature (MFT) in the U-pipe of BHE to calculate borehole thermal resistance Rb. Furthermore, the effects of borehole depth and volumetric flow rate on the calculating RMSE distribution between borehole thermal resistance Rb and effective borehole thermal resistance Rb∗ are investigated. The conclusion shows that the relative deviation between the two borehole thermal resistances corresponding to the volumetric flow rate 1.5e-4m3/s increases from 4.2% to 29.7% when borehole depth changes from 50 m to 200 m. Finally, the borehole depths corresponding to different volumetric flow rate are optimized to find the boundary line where Rb are nearly equal to Rb∗ in the operating time, and the impacts of grout thermal conductivity and heat rate per unit depth of BHE on the boundary line are quantitatively analyzed. Volumetric flow rate has more effect on Rb with the higher grout thermal conductivity, the relative error between the two Rb corresponding to V = 1.5e-4m3/s and V = 3e-4 m3/s is 10.8% for kg = 2.3 W/(m.°C). The effect of heat rate per unit depth of BHE on Rb is very limited, the relative error between the two Rb corresponding to q1=50 W/m and q1=80 W/m is 5.4% under V = 1.5e-4m3/s, and it is only 3.7% under V = 3e-4 m3/s.

Suggested Citation

  • Zhang, Changxing & Wang, Xinjie & Sun, Pengkun & Kong, Xiangqiang & Sun, Shicai, 2020. "Effect of depth and fluid flow rate on estimate for borehole thermal resistance of single U-pipe borehole heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 2399-2408.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2399-2408
    DOI: 10.1016/j.renene.2019.10.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios A. & Christodoulides, Paul & Pouloupatis, Panayiotis, 2012. "An analysis of heat flow through a borehole heat exchanger validated model," Applied Energy, Elsevier, vol. 92(C), pages 523-533.
    2. Zanchini, Enzo & Jahanbin, Aminhossein, 2017. "Correlations to determine the mean fluid temperature of double U-tube borehole heat exchangers with a typical geometry," Applied Energy, Elsevier, vol. 206(C), pages 1406-1415.
    3. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    4. Beier, Richard A., 2011. "Vertical temperature profile in ground heat exchanger during in-situ test," Renewable Energy, Elsevier, vol. 36(5), pages 1578-1587.
    5. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng & Du, Yaxing, 2014. "A p(t)-linear average method to estimate the thermal parameters of the borehole heat exchangers for in situ thermal response test," Applied Energy, Elsevier, vol. 131(C), pages 211-221.
    6. Zanchini, Enzo & Jahanbin, Aminhossein, 2018. "Simple equations to evaluate the mean fluid temperature of double-U-tube borehole heat exchangers," Applied Energy, Elsevier, vol. 231(C), pages 320-330.
    7. Lee, C.K. & Lam, H.N., 2008. "Computer simulation of borehole ground heat exchangers for geothermal heat pump systems," Renewable Energy, Elsevier, vol. 33(6), pages 1286-1296.
    8. Zhang, Changxing & Chen, Ping & Liu, Yufeng & Sun, Shicai & Peng, Donggen, 2015. "An improved evaluation method for thermal performance of borehole heat exchanger," Renewable Energy, Elsevier, vol. 77(C), pages 142-151.
    9. Du, Ciyuan & Chen, Youming, 2011. "An average fluid temperature to estimate borehole thermal resistance of ground heat exchanger," Renewable Energy, Elsevier, vol. 36(6), pages 1880-1885.
    10. Beier, Richard A. & Spitler, Jeffrey D., 2016. "Weighted average of inlet and outlet temperatures in borehole heat exchangers," Applied Energy, Elsevier, vol. 174(C), pages 118-129.
    11. Marcotte, D. & Pasquier, P., 2008. "On the estimation of thermal resistance in borehole thermal conductivity test," Renewable Energy, Elsevier, vol. 33(11), pages 2407-2415.
    12. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.
    2. Zhang, Changxing & Lu, Xizheng & Liu, Yufeng & Lu, Jiahui & Sun, Shicai, 2023. "Effect of seepage condition in geological stratification on thermal response test analysis of borehole heat exchanger," Renewable Energy, Elsevier, vol. 205(C), pages 813-822.
    3. Tomislav Kurevija & Marija Macenić & Martina Tuschl, 2023. "Drilling Deeper in Shallow Geoexchange Heat Pump Systems—Thermogeological, Energy and Hydraulic Benefits and Restraints," Energies, MDPI, vol. 16(18), pages 1-17, September.
    4. Chen, Zhi & Lian, Xingwei & Tan, Jinjia & Xiao, Henglin & Ma, Qiang & Zhuang, Yan, 2023. "Study on heat-exchange efficiency and energy efficiency ratio of a deeply buried pipe energy pile group considering seepage and circulating-medium flow rate," Renewable Energy, Elsevier, vol. 216(C).
    5. Park, Sangwoo & Lee, Seokjae & Park, Sangyeong & Choi, Hangseok, 2022. "Empirical formulas for borehole thermal resistance of parallel U-type cast-in-place energy pile," Renewable Energy, Elsevier, vol. 197(C), pages 211-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanchini, Enzo & Jahanbin, Aminhossein, 2018. "Simple equations to evaluate the mean fluid temperature of double-U-tube borehole heat exchangers," Applied Energy, Elsevier, vol. 231(C), pages 320-330.
    2. Zhang, Changxing & Xu, Hang & Fan, Jianhua & Sun, Pengkun & Sun, Shicai & Kong, Xiangqiang, 2020. "The coupled two-step parameter estimation procedure for borehole thermal resistance in thermal response test," Renewable Energy, Elsevier, vol. 154(C), pages 672-683.
    3. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    4. Javed, Saqib & Spitler, Jeffrey, 2017. "Accuracy of borehole thermal resistance calculation methods for grouted single U-tube ground heat exchangers," Applied Energy, Elsevier, vol. 187(C), pages 790-806.
    5. Jia, Jie & Lee, W.L. & Cheng, Yuanda, 2019. "Field demonstration of a first constant-temperature thermal response test with both heat injection and extraction for ground source heat pump systems," Applied Energy, Elsevier, vol. 249(C), pages 79-86.
    6. Pasquier, Philippe, 2018. "Interpretation of the first hours of a thermal response test using the time derivative of the temperature," Applied Energy, Elsevier, vol. 213(C), pages 56-75.
    7. Zanchini, Enzo & Jahanbin, Aminhossein, 2017. "Correlations to determine the mean fluid temperature of double U-tube borehole heat exchangers with a typical geometry," Applied Energy, Elsevier, vol. 206(C), pages 1406-1415.
    8. Spitler, Jeffrey D. & Gehlin, Signhild E.A., 2015. "Thermal response testing for ground source heat pump systems—An historical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1125-1137.
    9. Raymond, Jasmin & Lamarche, Louis & Malo, Michel, 2015. "Field demonstration of a first thermal response test with a low power source," Applied Energy, Elsevier, vol. 147(C), pages 30-39.
    10. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    11. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    12. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.
    13. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of disturbance on thermal response test, part 1: Development of disturbance analytical model, parametric study, and sensitivity analysis," Renewable Energy, Elsevier, vol. 85(C), pages 306-318.
    14. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    15. Louis Lamarche & Jasmin Raymond & Claude Hugo Koubikana Pambou, 2017. "Evaluation of the Internal and Borehole Resistances during Thermal Response Tests and Impact on Ground Heat Exchanger Design," Energies, MDPI, vol. 11(1), pages 1-17, December.
    16. Nian, Yong-Le & Wang, Xiang-Yang & Xie, Kun & Cheng, Wen-Long, 2020. "Estimation of ground thermal properties for coaxial BHE through distributed thermal response test," Renewable Energy, Elsevier, vol. 152(C), pages 1209-1219.
    17. Pasquier, Philippe & Marcotte, Denis, 2020. "Robust identification of volumetric heat capacity and analysis of thermal response tests by Bayesian inference with correlated residuals," Applied Energy, Elsevier, vol. 261(C).
    18. Yu, Xiaohui & Li, Hongwei & Yao, Sheng & Nielsen, Vilhjalmur & Heller, Alfred, 2020. "Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger," Renewable Energy, Elsevier, vol. 152(C), pages 189-197.
    19. Zhang, Linfeng & Huang, Gongsheng & Zhang, Quan & Wang, Jinggang, 2018. "An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system," Renewable Energy, Elsevier, vol. 126(C), pages 495-508.
    20. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2399-2408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.