IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7195-d1264707.html
   My bibliography  Save this article

Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics

Author

Listed:
  • Angel A. Juan

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Majsa Ammouriova

    (Computer Science Department, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Veronika Tsertsvadze

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Celia Osorio

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Noelia Fuster

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Yusef Ahsini

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

Abstract

With the increasing demand for sustainable urban development, smart cities have emerged as a promising solution for optimizing energy usage, reducing emissions, and enhancing the quality of life for citizens. In this context, the combined use of key performance indicators (KPIs) and data analytics has gained significant attention as a powerful tool for promoting energy efficiency and emissions reduction in urban areas. This paper presents a comprehensive conceptual framework in which a series of KPIs are proposed to serve as essential metrics for guiding, monitoring, and assessing energy efficiency and emissions reduction levels in smart cities. Some of the included KPIs in the analysis are 'annual energy consumption per person', 'reduction in greenhouse gas emissions', 'public transport use', and 'adoption of renewable energy'. By incorporating these KPIs, city planners and policymakers can gain valuable insights into the effectiveness of sustainability initiatives. Furthermore, the paper explores how the integration of KPIs with data analytics can be used for monitoring and assessing the overall performance of the city in terms of energy efficiency, emissions reduction, and the enhancement of urban living conditions. Visualization tools, such as radar plots, and time series analysis forecasting methods allow data to be processed and patterns to be identified, enabling informed decision-making and efficient resource allocation. Real-life case studies of ongoing smart city projects are presented in the paper, which also provides a KPI comparison among different European cities, as well as models to forecast the evolution of KPIs related to energy usage and emissions reduction in different European cities.

Suggested Citation

  • Angel A. Juan & Majsa Ammouriova & Veronika Tsertsvadze & Celia Osorio & Noelia Fuster & Yusef Ahsini, 2023. "Promoting Energy Efficiency and Emissions Reduction in Urban Areas with Key Performance Indicators and Data Analytics," Energies, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7195-:d:1264707
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Xue, Chaokai & Shahbaz, Muhammad & Ahmed, Zahoor & Ahmad, Mahmood & Sinha, Avik, 2022. "Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty?," Renewable Energy, Elsevier, vol. 184(C), pages 899-907.
    3. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    4. Todor Stojanovski, 2020. "Urban design and public transportation – public spaces, visual proximity and Transit-Oriented Development (TOD)," Journal of Urban Design, Taylor & Francis Journals, vol. 25(1), pages 134-154, January.
    5. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    6. Chang, Victor, 2021. "An ethical framework for big data and smart cities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    7. Canan G. Corlu & Rocio de la Torre & Adrian Serrano-Hernandez & Angel A. Juan & Javier Faulin, 2020. "Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities," Energies, MDPI, vol. 13(5), pages 1-33, March.
    8. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    9. Grafakos, S. & Viero, G. & Reckien, D. & Trigg, K. & Viguie, V. & Sudmant, A. & Graves, C. & Foley, A. & Heidrich, O. & Mirailles, J.M. & Carter, J. & Chang, L.H. & Nador, C. & Liseri, M. & Chelleri, , 2020. "Integration of mitigation and adaptation in urban climate change action plans in Europe: A systematic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    10. Paolo Cardullo & Rob Kitchin, 2019. "Smart urbanism and smart citizenship: The neoliberal logic of ‘citizen-focused’ smart cities in Europe," Environment and Planning C, , vol. 37(5), pages 813-830, August.
    11. Camboim, Guilherme Freitas & Zawislak, Paulo Antônio & Pufal, Nathália Amarante, 2019. "Driving elements to make cities smarter: Evidences from European projects," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 154-167.
    12. Liu Yang & Koen H. van Dam & Lufeng Zhang, 2020. "Developing Goals and Indicators for the Design of Sustainable and Integrated Transport Infrastructure and Urban Spaces," Sustainability, MDPI, vol. 12(22), pages 1-34, November.
    13. Chiara Garau & Valentina Maria Pavan, 2018. "Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities," Sustainability, MDPI, vol. 10(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Kyu Kim & Yeon-Woog Kang & Hye-Rin Jo & Jin Geon Kim & Minwoo Lee, 2024. "Direct Air Cooling of Pipe-Type Transmission Cable for Ampacity Enhancement: Simulations and Experiments," Energies, MDPI, vol. 17(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    2. Tomislav Letnik & Katja Hanžič & Giuseppe Luppino & Matej Mencinger, 2022. "Impact of Logistics Trends on Freight Transport Development in Urban Areas," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    5. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Sun, Yunpeng & Tian, Wenjuan & Mehmood, Usman & Zhang, Xiaoyu & Tariq, Salman, 2023. "How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries?," Resources Policy, Elsevier, vol. 85(PA).
    7. Canelli, Rosa & Fontana, Giuseppe & Realfonzo, Riccardo & Passarella, Marco Veronese, 2024. "Energy crisis, economic growth and public finance in Italy," Energy Economics, Elsevier, vol. 132(C).
    8. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    9. Ida Skubis & Radosław Wolniak & Wiesław Wes Grebski, 2024. "AI and Human-Centric Approach in Smart Cities Management: Case Studies from Silesian and Lesser Poland Voivodships," Sustainability, MDPI, vol. 16(18), pages 1-26, September.
    10. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    11. Han, Chunjia & Yang, Mu & Piterou, Athena, 2021. "Do news media and citizens have the same agenda on COVID-19? an empirical comparison of twitter posts," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Yongjun Shen & Qiong Bao & Elke Hermans, 2020. "Applying an Alternative Approach for Assessing Sustainable Road Transport: A Benchmarking Analysis on EU Countries," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    13. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    14. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    15. Ying Zhou & Weiwei Li & Pingtao Yi & Chengju Gong, 2019. "Evaluation of City Sustainability from the Perspective of Behavioral Guidance," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    16. Karina RADCHENKO, 2024. "Factors influencing the content of Smart City initiatives(particularly based on institutional theories of organization)," Smart Cities and Regional Development (SCRD) Journal, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 8(3), pages 55-64, April.
    17. André Luis Azevedo Guedes & Jeferson Carvalho Alvarenga & Maurício Dos Santos Sgarbi Goulart & Martius Vicente Rodriguez y Rodriguez & Carlos Alberto Pereira Soares, 2018. "Smart Cities: The Main Drivers for Increasing the Intelligence of Cities," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    18. Marcin Janusz & Marcin Kowalczyk, 2022. "How Smart Are V4 Cities? Evidence from the Multidimensional Analysis," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    19. Usman Mehmood & Salman Tariq & Zia Ul-Haq & Ephraim Bonah Agyekum & Salah Kamel & Mohamed Elnaggar & Hasan Nawaz & Ammar Hameed & Shafqat Ali, 2022. "Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO 2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
    20. Sebastiano Carbonara & Marco Faustoferri & Davide Stefano, 2021. "Real Estate Values and Urban Quality: A Multiple Linear Regression Model for Defining an Urban Quality Index," Sustainability, MDPI, vol. 13(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7195-:d:1264707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.