IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1245-d505232.html
   My bibliography  Save this article

Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin

Author

Listed:
  • Houssem Rafik Al-Hana Bouchekara

    (Department of Electrical Engineering, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia)

  • Mohammad Shoaib Shahriar

    (Department of Electrical Engineering, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia)

  • Muhammad Sharjeel Javaid

    (Department of Electrical Engineering, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia)

  • Yusuf Abubakar Sha’aban

    (Department of Electrical Engineering, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia)

  • Makbul Anwari Muhammad Ramli

    (Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

This paper presents an optimal design for a nanogrid/microgrid for desert camps in the city of Hafr Al-Batin in Saudi Arabia. The camps were designed to operate as separate nanogrids or to operate as an interconnected microgrid. The hybrid nanogrid/microgrid considered in this paper consists of a solar system, storage batteries, diesel generators, inverter, and load components. To offer the designer/operator various choices, the problem was formulated as a multi-objective optimization problem considering two objective functions, namely: the cost of electricity (COE) and the loss of power supply probability (LPSP). Furthermore, various component models were implemented, which offer a variety of equipment compilation possibilities. The formulated problem was then solved using the multi-objective evolutionary algorithm, based on both dominance and decomposition (MOEA/DD). Two cases were investigated corresponding to the two proposed modes of operation, i.e., nanogrid operation mode and microgrid operation mode. The microgrid was designed considering the interconnection of four nanogrids. The obtained Pareto front (PF) was reported for each case and the solutions forming this front were discussed. Based on this investigation, the designer/operator can select the most appropriate solution from the available set of solutions using his experience and other factors, e.g., budget, availability of equipment and customer-specific requirements. Furthermore, to assess the quality of the solutions found using the MOEA/DD, three different methods were used, and their results compared with the MOEA/DD. It was found that the MOEA/DD obtained better results (nondominated solutions), especially for the microgrid operation mode.

Suggested Citation

  • Houssem Rafik Al-Hana Bouchekara & Mohammad Shoaib Shahriar & Muhammad Sharjeel Javaid & Yusuf Abubakar Sha’aban & Makbul Anwari Muhammad Ramli, 2021. "Multi-Objective Optimization of a Hybrid Nanogrid/Microgrid: Application to Desert Camps in Hafr Al-Batin," Energies, MDPI, vol. 14(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1245-:d:505232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aitor Vazquez & Kevin Martin & Manuel Arias & Javier Sebastian, 2019. "On Bidirectional DC Nano-Grids: Design Considerations and an Architecture Proposal," Energies, MDPI, vol. 12(19), pages 1-20, September.
    2. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    3. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    4. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    5. Azoumah, Y. & Yamegueu, D. & Ginies, P. & Coulibaly, Y. & Girard, P., 2011. "Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept," Energy Policy, Elsevier, vol. 39(1), pages 131-141, January.
    6. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    7. Denise Tellbach & Yan-Fu Li, 2018. "Cyber-Attacks on Smart Meters in Household Nanogrid: Modeling, Simulation and Analysis," Energies, MDPI, vol. 11(2), pages 1-19, February.
    8. Wang, Rui & Xiong, Jian & He, Min-fan & Gao, Liang & Wang, Ling, 2020. "Multi-objective optimal design of hybrid renewable energy system under multiple scenarios," Renewable Energy, Elsevier, vol. 151(C), pages 226-237.
    9. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
    10. El-Hefnawi, Said H., 1998. "Photovoltaic diesel-generator hybrid power system sizing," Renewable Energy, Elsevier, vol. 13(1), pages 33-40.
    11. Fahad Alharbi & Denes Csala, 2020. "Saudi Arabia’s Solar and Wind Energy Penetration: Future Performance and Requirements," Energies, MDPI, vol. 13(3), pages 1-18, January.
    12. Kumar Shivam & Jong-Chyuan Tzou & Shang-Chen Wu, 2020. "Multi-Objective Sizing Optimization of a Grid-Connected Solar–Wind Hybrid System Using Climate Classification: A Case Study of Four Locations in Southern Taiwan," Energies, MDPI, vol. 13(10), pages 1-30, May.
    13. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    14. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yerasimos Yerasimou & Marios Kynigos & Venizelos Efthymiou & George E. Georghiou, 2021. "Design of a Smart Nanogrid for Increasing Energy Efficiency of Buildings," Energies, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramli, Makbul A.M. & Bouchekara, H.R.E.H. & Alghamdi, Abdulsalam S., 2018. "Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 121(C), pages 400-411.
    2. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    3. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    4. Lucas V. Bellinaso & Edivan L. Carvalho & Rafael Cardoso & Leandro Michels, 2021. "Price-Response Matrices Design Methodology for Electrical Energy Management Systems Based on DC Bus Signalling," Energies, MDPI, vol. 14(6), pages 1-19, March.
    5. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Saad M. Abdullah & Makbul A. Ramli, 2023. "Sizing of Hybrid PV/Battery/Wind/Diesel Microgrid System Using an Improved Decomposition Multi-Objective Evolutionary Algorithm Considering Uncertainties and Battery Degradation," Sustainability, MDPI, vol. 15(14), pages 1-38, July.
    6. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    7. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    8. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    9. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    10. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    11. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    12. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    13. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    14. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    15. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    16. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    17. Rangel, N. & Li, H. & Aristidou, P., 2023. "An optimisation tool for minimising fuel consumption, costs and emissions from Diesel-PV-Battery hybrid microgrids," Applied Energy, Elsevier, vol. 335(C).
    18. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    19. Ludmil Stoyanov & Ivan Bachev & Zahari Zarkov & Vladimir Lazarov & Gilles Notton, 2021. "Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    20. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1245-:d:505232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.