IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3832-d821939.html
   My bibliography  Save this article

Sensitivity Analysis of High-Pressure Methanol—Steam Reformer Using the Condensation Enthalpy of Water Vapor

Author

Listed:
  • Dongjin Yu

    (Department of Mechanical Engineering, Graduate School, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea)

  • Byoungjae Kim

    (School of Mechanical Engineering, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea)

  • Hyunjin Ji

    (Agency for Defense Development, Yuseong-gu, P.O. Box 35-44, Daejeon 34186, Korea)

  • Sangseok Yu

    (School of Mechanical Engineering, Chungnam National University, 99 Daehangno, Yuseong-gu, Daejeon 34134, Korea)

Abstract

A methanol–steam reformer (MSR) can safely provide hydrogen-rich fuel for a fuel cell system. Since the operating temperature of an MSR is relatively low, convective heat transfer is typically used to provide thermal energy to the endothermic reactions in the MSR. In this study, the use of phase change heat transfer to provide thermal energy to the endothermic reactions was investigated, which enhanced the temperature uniformity longitudinally along the MSR. ANSYS Fluent ® software was used to investigate the performance of the reforming reactions. A comparative analysis using sensible heat and latent heat as the heat supply sources was performed. Using latent heat as a heat source achieved a lesser temperature drop than sensible heat that was under 5.29 K in the outer pipe. Moreover, a sensitivity analysis of methanol–steam-reforming reactions that use phase change heat transfer in terms of the carbon ratio, gas hourly velocity (for the inner and outer pipes of the MSR), inlet temperature (inner and outer pipes), reactor length, and operating pressure (inner pipe) was performed. When the phase change energy of water vapor is used, the wall temperature of the MSR is conveniently controlled and is uniformly distributed along the channel (standard deviation: 0.81 K). Accordingly, the methanol conversion rate of an MSR that uses phase change energy is ~4% higher than that of an MSR that employs convective heat transfer.

Suggested Citation

  • Dongjin Yu & Byoungjae Kim & Hyunjin Ji & Sangseok Yu, 2022. "Sensitivity Analysis of High-Pressure Methanol—Steam Reformer Using the Condensation Enthalpy of Water Vapor," Energies, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3832-:d:821939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    2. Hyemin Song & Younghyeon Kim & Dongjin Yu & Byoung Jae Kim & Hyunjin Ji & Sangseok Yu, 2020. "A Computational Analysis of a Methanol Steam Reformer Using Phase Change Heat Transfer," Energies, MDPI, vol. 13(17), pages 1-14, August.
    3. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Wang & Feng Wang & Delun Guan, 2022. "A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production," Energies, MDPI, vol. 15(21), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Marco Percoco, 2006. "A Note on the Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 589-594, June.
    4. Wenbin Ruan & Zhenzhou Lu & Longfei Tian, 2013. "A modified variance-based importance measure and its solution by state dependent parameter," Journal of Risk and Reliability, , vol. 227(1), pages 3-15, February.
    5. Kunz, Nathan & Chesney, Thomas & Trautrims, Alexander & Gold, Stefan, 2023. "Adoption and transferability of joint interventions to fight modern slavery in food supply chains," International Journal of Production Economics, Elsevier, vol. 258(C).
    6. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    7. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    8. Gonnet, Gaston H. & Stewart, John & Lafleur, Joseph & Keith, Stephen & McLellan, Mark & Jiang-Gorsline, David & Snider, Tim, 2021. "Analysis of feature influence on Covid-19 Death Rate Per Country Using a Novel Orthogonalization Technique," MetaArXiv 4kw2n, Center for Open Science.
    9. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    10. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    11. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    12. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    13. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    15. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    17. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    18. Andrea Saltelli & Arnald Puy, 2023. "What can mathematical modelling contribute to a sociology of quantification?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-8, December.
    19. Viet Duong Nguyen & Chiara Gigliarano, 2024. "Weight optimization for composite indicators based on variable importance: an application to measuring well-being in European Regions," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(1), pages 113-128, January-M.
    20. H. Christopher Frey, 2002. "Introduction to Special Section on Sensitivity Analysis and Summary of NCSU/USDA Workshop on Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 539-545, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3832-:d:821939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.