IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7058-d1258196.html
   My bibliography  Save this article

Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO 2 -Free Production of Hydrogen

Author

Listed:
  • David Neuschitzer

    (Department of Nonferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria)

  • David Scheiblehner

    (Department of Nonferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria)

  • Helmut Antrekowitsch

    (Department of Nonferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria)

  • Stefan Wibner

    (Department of Nonferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria)

  • Andreas Sprung

    (Department of Nonferrous Metallurgy, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria)

Abstract

In light of the growing interest in hydrogen as an energy carrier and reducing agent, various industries, including the iron and steel sector, are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries, the production of hydrogen must be significantly expanded and further developed. However, current hydrogen production heavily relies on fossil-fuel-based methods, resulting in a considerable environmental burden, with approximately 10 tons of CO 2 emissions per ton of hydrogen. To address this challenge, methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO 2 emissions. This process involves converting methane (CH 4 ) into hydrogen and solid carbon, significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence, increasing methane conversion from 35% at 1150 °C to 74% at 1250 °C. In contrast, the effect of the methane flow rate remains relatively small in the investigated range. Moreover, an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally, a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.

Suggested Citation

  • David Neuschitzer & David Scheiblehner & Helmut Antrekowitsch & Stefan Wibner & Andreas Sprung, 2023. "Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO 2 -Free Production of Hydrogen," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7058-:d:1258196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.
    2. Oleg A. Kolenchukov & Kirill A. Bashmur & Vladimir V. Bukhtoyarov & Sergei O. Kurashkin & Vadim S. Tynchenko & Elena V. Tsygankova & Roman B. Sergienko & Vladislav V. Kukartsev, 2022. "Experimental Study of Oil Non-Condensable Gas Pyrolysis in a Stirred-Tank Reactor for Catalysis of Hydrogen and Hydrogen-Containing Mixtures Production," Energies, MDPI, vol. 15(22), pages 1-16, November.
    3. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    4. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
    5. Eugenio Meloni, 2022. "Electrification of Chemical Engineering: A New Way to Intensify Chemical Processes," Energies, MDPI, vol. 15(15), pages 1-3, July.
    6. Mirkarimi, S.M.R. & Bensaid, S. & Negro, V. & Chiaramonti, D., 2023. "Review of methane cracking over carbon-based catalyst for energy and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Gayatri Udaysinh Ingale & Hyun-Min Kwon & Soohwa Jeong & Dongho Park & Whidong Kim & Byeingryeol Bang & Young-Il Lim & Sung Won Kim & Youn-Bae Kang & Jungsoo Mun & Sunwoo Jun & Uendo Lee, 2022. "Assessment of Greenhouse Gas Emissions from Hydrogen Production Processes: Turquoise Hydrogen vs. Steam Methane Reforming," Energies, MDPI, vol. 15(22), pages 1-20, November.
    8. Raza, Jehangeer & Khoja, Asif Hussain & Anwar, Mustafa & Saleem, Faisal & Naqvi, Salman Raza & Liaquat, Rabia & Hassan, Muhammad & Javaid, Rahat & Qazi, Umair Yaqub & Lumbers, Brock, 2022. "Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Go, Yujin & Kim, Suyoung & Chang, Ye Ji & Won, Geunhye & Kim, Sung Won, 2024. "Enhanced thermal efficiency of solar liquid tin receiver with carbon black-reinforced carbon nanotube absorber," Renewable Energy, Elsevier, vol. 228(C).
    10. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    11. Marcel Clemens & Torsten Clemens, 2022. "Scenarios to Decarbonize Austria’s Energy Consumption and the Role of Underground Hydrogen Storage," Energies, MDPI, vol. 15(10), pages 1-23, May.
    12. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    13. Msheik, Malek & Rodat, Sylvain & Abanades, Stéphane, 2022. "Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors," Energy, Elsevier, vol. 260(C).
    14. Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
    15. Mateusz Wnukowski, 2023. "Methane Pyrolysis with the Use of Plasma: Review of Plasma Reactors and Process Products," Energies, MDPI, vol. 16(18), pages 1-34, September.
    16. Tamás I. Korányi & Miklós Németh & Andrea Beck & Anita Horváth, 2022. "Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production," Energies, MDPI, vol. 15(17), pages 1-14, August.
    17. Wenxiong Xi & Mengyao Xu & Kai Ma & Jian Liu, 2022. "Heat Transfer Enhancement Methods Applied in Energy Conversion, Storage and Propulsion Systems," Energies, MDPI, vol. 15(19), pages 1-3, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7058-:d:1258196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.