IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p535-d1023505.html
   My bibliography  Save this article

Increasing Turbine Hall Safety by Using Fire-Resistant, Hydrogen-Containing Lubricant Cooling Liquid for Rotor Steel Mechanical Treatment

Author

Listed:
  • Alexander I. Balitskii

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79-601 Lviv, Ukraine
    Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 19 Piastow av., 70-310 Szczecin, Poland)

  • Maria R. Havrilyuk

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79-601 Lviv, Ukraine)

  • Valentina O. Balitska

    (Department of Physics and Chemistry of Combustion, Lviv State University of Life Safety, 35 Kleparіvska, 79-000 Lviv, Ukraine)

  • Valeriі O. Kolesnikov

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79-601 Lviv, Ukraine
    Department of Production Technology and Professional Education, Taras Shevchenko National University of Lugansk, Kovalya Str. 3, 36-000 Poltava, Ukraine)

  • Ljubomyr M. Ivaskevych

    (Department of Strength of the Materials and Structures in Hydrogen-Containing Environments, Karpenko Physico-Mechanical Institute, National Academy of Sciences of Ukraine, 5 Naukova Str., 79-601 Lviv, Ukraine)

Abstract

This paper is devoted to the development of hydrogen-containing, environmentally safe, fire-resistant, and corrosion-protected lubricant cooling liquids (LCLs) from vegetable oils with improved sanitary and hygienic parameters for the machining of parts and equipment made from high-strength steels for application during the interoperation period in turbine halls. The use of plant raw materials as ecologically and fire-safe LCLs increased the efficiency of LCLs when evaluating drilling steel in terms of the dependence of the stability of the cutting tool on the drilling speed. Chips formed from LCLs during turning had a compact, cylindrical appearance, and the addition of both water and coolant during turning significantly changed the morphology of the cutting particles. Using water and LCL intensified the physical and chemical destruction processes. After the use of water and LCL, the concentration of hydrogen in the cutting products of 38KHN3MFA steel increased, which indicated its participation in facilitating the destruction during machining. In the chips formed when using LCL, the amount of hydrogen increased by 2.25 times compared to the chips obtained with the dry treatment, while with coolants, it increased by 2.6 times, indicating the intense flow of decomposition products of LCL through diffusion processes in the cutting zone. Hydrogen reduces the energy costs for the destruction of structural and phase components and promotes their dispersion. The creation of 2D and 3D images allowed for a more detailed approach to the study of the influence of LCL on surface treatments.

Suggested Citation

  • Alexander I. Balitskii & Maria R. Havrilyuk & Valentina O. Balitska & Valeriі O. Kolesnikov & Ljubomyr M. Ivaskevych, 2023. "Increasing Turbine Hall Safety by Using Fire-Resistant, Hydrogen-Containing Lubricant Cooling Liquid for Rotor Steel Mechanical Treatment," Energies, MDPI, vol. 16(1), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:535-:d:1023505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Myroslav Kindrachuk & Dmytro Volchenko & Alexander Balitskii & Karol F. Abramek & Mykola Volchenko & Olexiy Balitskii & Vasyl Skrypnyk & Dmytro Zhuravlev & Alina Yurchuk & Valerii Kolesnikov, 2021. "Wear Resistance of Spark Ignition Engine Piston Rings in Hydrogen-Containing Environments," Energies, MDPI, vol. 14(16), pages 1-13, August.
    3. Alexander Balitskii & Valerii Kolesnikov & Karol F. Abramek & Olexiy Balitskii & Jacek Eliasz & Havrylyuk Marya & Lyubomir Ivaskevych & Ielyzaveta Kolesnikova, 2021. "Influence of Hydrogen-Containing Fuels and Environmentally Friendly Lubricating Coolant on Nitrogen Steels’ Wear Resistance for Spark Ignition Engine Pistons and Rings Kit Gasket Set," Energies, MDPI, vol. 14(22), pages 1-17, November.
    4. Nor, Nurazira Mohd & Salih, Nadia & Salimon, Jumat, 2022. "Optimization and lubrication properties of Malaysian crude palm oil fatty acids based neopentyl glycol diester green biolubricant," Renewable Energy, Elsevier, vol. 200(C), pages 942-956.
    5. Alexander I. Balitskii & Vitaly V. Dmytryk & Lyubomir M. Ivaskevich & Olexiy A. Balitskii & Alyona V. Glushko & Lev B. Medovar & Karol F. Abramek & Ganna P. Stovpchenko & Jacek J. Eliasz & Marcin A. K, 2022. "Improvement of the Mechanical Characteristics, Hydrogen Crack Resistance and Durability of Turbine Rotor Steels Welded Joints," Energies, MDPI, vol. 15(16), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    2. Alexander I. Balitskii & Yuliia H. Kvasnytska & Lyubomir M. Ivaskevych & Kateryna H. Kvasnytska & Olexiy A. Balitskii & Inna A. Shalevska & Oleg Y. Shynskii & Jaroslaw M. Jaworski & Jakub M. Dowejko, 2023. "Hydrogen and Corrosion Resistance of Nickel Superalloys for Gas Turbines, Engines Cooled Blades," Energies, MDPI, vol. 16(3), pages 1-15, January.
    3. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    4. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    5. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    6. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    7. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    8. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    9. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    10. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    11. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    12. Sarkar, Susanjib & Kumar, Amit & Sultana, Arifa, 2011. "Biofuels and biochemicals production from forest biomass in Western Canada," Energy, Elsevier, vol. 36(10), pages 6251-6262.
    13. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    14. Alexander I. Balitskii & Karol F. Abramek & Tomasz K. Osipowicz & Jacek J. Eliasz & Valentina O. Balitska & Paweł Kochmański & Konrad Prajwowski & Łukasz S. Mozga, 2023. "Hydrogen-Containing “Green” Fuels Influence on the Thermal Protection and Formation of Wear Processes Components in Compression-Ignition Engines Modern Injection System," Energies, MDPI, vol. 16(8), pages 1-17, April.
    15. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2010. "Techno-economical optimization of the production of hydrogen from PV-Wind systems connected to the electrical grid," Renewable Energy, Elsevier, vol. 35(4), pages 747-758.
    16. Pukazhselvan, D. & Hudson, M. Sterlin Leo & Sinha, A.S.K. & Srivastava, O.N., 2010. "Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride," Energy, Elsevier, vol. 35(12), pages 5037-5042.
    17. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    18. Fabrizio Ganci & Tracy Baguet & Giuseppe Aiello & Valentino Cusumano & Philippe Mandin & Carmelo Sunseri & Rosalinda Inguanta, 2019. "Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers," Energies, MDPI, vol. 12(19), pages 1-17, September.
    19. Shih, Yu-Jen & Su, Chia-Chi & Huang, Yao-Hui & Lu, Ming-Chun, 2013. "SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution," Energy, Elsevier, vol. 54(C), pages 263-270.
    20. Betancourt-Torcat, Alberto & Elkamel, Ali & Ricardez-Sandoval, Luis, 2012. "A modeling study of the effect of carbon dioxide mitigation strategies, natural gas prices and steam consumption on the Canadian Oil Sands operations," Energy, Elsevier, vol. 45(1), pages 1018-1033.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:535-:d:1023505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.