IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i10p3961-3973.html
   My bibliography  Save this article

Nuclear hydrogen: An assessment of product flexibility and market viability

Author

Listed:
  • Botterud, Audun
  • Yildiz, Bilge
  • Conzelmann, Guenter
  • Petri, Mark C.

Abstract

Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies.

Suggested Citation

  • Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3961-3973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00352-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl Magnus Maribu & Stein-Erik Fleten, 2008. "Combined Heat and Power in Commercial Buildings: Investment and Risk Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 123-150.
    2. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 37-53.
    3. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Rob Hovsapian & Julian D. Osorio & Mayank Panwar & Chryssostomos Chryssostomidis & Juan C. Ordonez, 2021. "Grid-Scale Ternary-Pumped Thermal Electricity Storage for Flexible Operation of Nuclear Power Generation under High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 14(13), pages 1-15, June.
    3. Tian Zhao & Zhixin Liu, 2023. "Investment Timing Analysis of Hydrogen-Refueling Stations and the Case of China: Independent or Co-Operative Investment?," Energies, MDPI, vol. 16(13), pages 1-17, June.
    4. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    5. Hampe, Jona & Madlener, Reinhard, 2012. "Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration," FCN Working Papers 10/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    7. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casper Agaton, 2017. "Coal, Renewable, or Nuclear? A Real Options Approach to Energy Investments in the Philippines," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 6(2), pages 50-62.
    2. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
    3. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    4. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    5. Abdullah Almansour & Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, , vol. 37(2), pages 61-88, April.
    6. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    7. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    8. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    9. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    10. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    11. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    12. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    13. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    14. Bai, Yang & Meng, Jie & Meng, Fanyi & Fang, Guochang, 2020. "Stochastic analysis of a shale gas investment strategy for coping with production uncertainties," Energy Policy, Elsevier, vol. 144(C).
    15. Julien Chevallier & Stéphane Goutte, 2014. "The goodness-of-fit of the fuel-switching price using the mean-reverting Lévy jump process," Working Papers 2014-285, Department of Research, Ipag Business School.
    16. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    17. Fleten, Stein-Erik & Näsäkkälä, Erkka, 2003. "Gas fired power plants: Investment timing, operating flexibility and abandonment," MPRA Paper 217, University Library of Munich, Germany, revised Jun 2006.
    18. Ozorio, Luiz de Magalhães & Bastian-Pinto, Carlos de Lamare & Baidya, Tara Keshar Nanda & Brandão, Luiz Eduardo Teixeira, 2013. "Investment decision in integrated steel plants under uncertainty," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 55-64.
    19. Michail Chronopoulos, Verena Hagspiel, and Stein-Erik Fleten, 2016. "Stepwise Green Investment under Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Richter, Martin & Sørensen, Carsten, 2002. "Stochastic Volatility and Seasonality in Commodity Futures and Options: The Case of Soybeans," Working Papers 2002-4, Copenhagen Business School, Department of Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3961-3973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.