IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp493-499.html
   My bibliography  Save this article

Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation

Author

Listed:
  • Naor, Efrat Ohayon
  • Koberg, Miri
  • Gedanken, Aharon

Abstract

SrO/SiO2 composite was synthesized in a few minutes by reacting Strontium acetylacetonate in benzyl alcohol with mm size SiO2 beads using microwave radiation under argon atmosphere. The current work illustrates the optimization of a one-stage method whereby Nannochloropsis microalgae is converted to biodiesel using direct transesterification by microwave irradiation, the SrO/SiO2 serving as a base catalyst. Microwave radiation accelerates the disruption of the microalgae cells, and eases the release of oil. The SrO/SiO2 has been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), scanning electron micrograph (SEM) and dynamic light scattering (DLS). The activity of the catalyst particles in the transesterification reaction was studied using 1H NMR spectroscopy. The catalyst was reused for six cycles without appreciable loss in catalytic activity and the biodiesel yield of the Nannochloropsis microalgae was measured.

Suggested Citation

  • Naor, Efrat Ohayon & Koberg, Miri & Gedanken, Aharon, 2017. "Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation," Renewable Energy, Elsevier, vol. 101(C), pages 493-499.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:493-499
    DOI: 10.1016/j.renene.2016.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Penner, S.S., 2006. "Steps toward the hydrogen economy," Energy, Elsevier, vol. 31(1), pages 33-43.
    2. Blackler, T. & Iqbal, M.T., 2006. "Pre-feasibility study of wind power generation in holyrood, newfoundland," Renewable Energy, Elsevier, vol. 31(4), pages 489-502.
    3. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aghilinategh, Maryam & Barati, Mohammad & Hamadanian, Masood, 2020. "The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 176-184.
    2. Li, Hui & Liu, Fengsheng & Ma, Xiaoling & Cui, Ping & Guo, Min & Li, Yan & Gao, Yan & Zhou, Shoujun & Yu, Mingzhi, 2020. "An efficient basic heterogeneous catalyst synthesis of magnetic mesoporous Fe@C support SrO for transesterification," Renewable Energy, Elsevier, vol. 149(C), pages 816-827.
    3. Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
    4. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    2. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    3. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    4. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    5. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    6. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    7. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    8. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    9. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    10. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    11. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    12. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    13. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    14. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    15. Lam, Man Kee & Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2009. "Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1456-1464, August.
    16. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    17. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    19. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    20. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:493-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.